HEAL DSpace

Dynamic buckling of a simple geometrically imperfect frame using Catastrophe Theory

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raftoyiannis, IG en
dc.contributor.author Constantakopoulos, TG en
dc.contributor.author Michaltsos, GT en
dc.contributor.author Kounadis, AN en
dc.date.accessioned 2014-03-01T01:24:02Z
dc.date.available 2014-03-01T01:24:02Z
dc.date.issued 2006 en
dc.identifier.issn 0020-7403 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17174
dc.subject Catastrophe theory en
dc.subject Dynamic buckling en
dc.subject Fold catastrophes en
dc.subject Inperfect frames en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Materials science en
dc.subject.other Nonlinear equations en
dc.subject.other Numerical analysis en
dc.subject.other Potential energy en
dc.subject.other Set theory en
dc.subject.other Structural frames en
dc.subject.other Catastrophe theory en
dc.subject.other Dynamic buckling en
dc.subject.other Fold catastrophes en
dc.subject.other Inperfect frames en
dc.subject.other Total potential energy (TPE) en
dc.subject.other Buckling en
dc.title Dynamic buckling of a simple geometrically imperfect frame using Catastrophe Theory en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijmecsci.2006.05.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijmecsci.2006.05.010 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This paper deals with nonlinear static and dynamic buckling of a geometrically imperfect two-bar frame due to initially crooked bars, which is subjected to an eccentrically applied load at its joint. The analysis is facilitated by considering the frame (being a continuous system) as one degree-of-freedom (1-DOF) system with generalized coordinate unknown the column axial force and then by employing catastrophe theory. Through a local analysis via Taylor's expansion of the nonlinear equilibrium equation of the frame, one can classify the total potential energy (TPE) function of the frame to the canonical form of the corresponding TPE function of the seven elementary Thom's catastrophes. Using energy criteria static catastrophes are extended to the corresponding dynamic catastrophes of undamped frames under step loading (autonomous systems) by conveniently determining the dynamic singularity and bifurcational sets. Numerical examples associated with static and dynamic fold catastrophes demonstrate the efficiency and reliability of the present approach. (C) 2006 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Mechanical Sciences en
dc.identifier.doi 10.1016/j.ijmecsci.2006.05.010 en
dc.identifier.isi ISI:000240702800001 en
dc.identifier.volume 48 en
dc.identifier.issue 10 en
dc.identifier.spage 1021 en
dc.identifier.epage 1030 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής