HEAL DSpace

Energy theorems and the J-integral in dipolar gradient elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiadis, HG en
dc.contributor.author Grentzelou, CG en
dc.date.accessioned 2014-03-01T01:24:18Z
dc.date.available 2014-03-01T01:24:18Z
dc.date.issued 2006 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17208
dc.subject Crack problems en
dc.subject Dipolar stresses en
dc.subject Energy release rate en
dc.subject Energy theorems en
dc.subject Generalized continuum theories en
dc.subject Gradient elasticity en
dc.subject J-integral en
dc.subject Microstructure en
dc.subject Uniqueness en
dc.subject Variational principles en
dc.subject.classification Mechanics en
dc.subject.other Computational methods en
dc.subject.other Cracks en
dc.subject.other Microstructure en
dc.subject.other Potential energy en
dc.subject.other Stresses en
dc.subject.other Theorem proving en
dc.subject.other Crack problems en
dc.subject.other Dipolar stresses en
dc.subject.other Energy release rate en
dc.subject.other Energy theorems en
dc.subject.other Generalized continuum theories en
dc.subject.other Gradient elasticity en
dc.subject.other J-integral en
dc.subject.other Uniqueness en
dc.subject.other Variational principles en
dc.subject.other Elasticity en
dc.title Energy theorems and the J-integral in dipolar gradient elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2005.08.009 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2005.08.009 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Within the framework of Mindlin's dipolar gradient elasticity, general energy theorems are proved in this work. These are the theorem of minimum potential energy, the theorem of minimum complementary potential energy, a variational principle analogous to that of the Hellinger-Reissner principle in classical theory, two theorems analogous to those of Castigliano and Engesser in classical theory, a uniqueness theorem of the Kirchhoff-Neumann type, and a reciprocal theorem. These results can be of importance to computational methods for analyzing practical problems. In addition, the J-integral of fracture mechanics is derived within the same framework. The new form of the J-integral is identified with the energy release rate at the tip of a growing crack and its path-independence is proved. The theory of dipolar gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51-78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases of the general theory considered here are the well-known theory of couple-stress elasticity and the recently popularized theory of strain-gradient elasticity. The latter case is also treated in the present study. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2005.08.009 en
dc.identifier.isi ISI:000239711000017 en
dc.identifier.volume 43 en
dc.identifier.issue 18-19 en
dc.identifier.spage 5690 en
dc.identifier.epage 5712 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής