dc.contributor.author |
Georgiadis, HG |
en |
dc.contributor.author |
Grentzelou, CG |
en |
dc.date.accessioned |
2014-03-01T01:24:18Z |
|
dc.date.available |
2014-03-01T01:24:18Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17208 |
|
dc.subject |
Crack problems |
en |
dc.subject |
Dipolar stresses |
en |
dc.subject |
Energy release rate |
en |
dc.subject |
Energy theorems |
en |
dc.subject |
Generalized continuum theories |
en |
dc.subject |
Gradient elasticity |
en |
dc.subject |
J-integral |
en |
dc.subject |
Microstructure |
en |
dc.subject |
Uniqueness |
en |
dc.subject |
Variational principles |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Cracks |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Potential energy |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Crack problems |
en |
dc.subject.other |
Dipolar stresses |
en |
dc.subject.other |
Energy release rate |
en |
dc.subject.other |
Energy theorems |
en |
dc.subject.other |
Generalized continuum theories |
en |
dc.subject.other |
Gradient elasticity |
en |
dc.subject.other |
J-integral |
en |
dc.subject.other |
Uniqueness |
en |
dc.subject.other |
Variational principles |
en |
dc.subject.other |
Elasticity |
en |
dc.title |
Energy theorems and the J-integral in dipolar gradient elasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2005.08.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2005.08.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Within the framework of Mindlin's dipolar gradient elasticity, general energy theorems are proved in this work. These are the theorem of minimum potential energy, the theorem of minimum complementary potential energy, a variational principle analogous to that of the Hellinger-Reissner principle in classical theory, two theorems analogous to those of Castigliano and Engesser in classical theory, a uniqueness theorem of the Kirchhoff-Neumann type, and a reciprocal theorem. These results can be of importance to computational methods for analyzing practical problems. In addition, the J-integral of fracture mechanics is derived within the same framework. The new form of the J-integral is identified with the energy release rate at the tip of a growing crack and its path-independence is proved. The theory of dipolar gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51-78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases of the general theory considered here are the well-known theory of couple-stress elasticity and the recently popularized theory of strain-gradient elasticity. The latter case is also treated in the present study. (c) 2005 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2005.08.009 |
en |
dc.identifier.isi |
ISI:000239711000017 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
18-19 |
en |
dc.identifier.spage |
5690 |
en |
dc.identifier.epage |
5712 |
en |