HEAL DSpace

Estimates of blow-up time for a non-local reactive-convective problem modelling ohmic heating of foods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nikolopoulos, CV en
dc.contributor.author Tzanetis, DE en
dc.date.accessioned 2014-03-01T01:24:19Z
dc.date.available 2014-03-01T01:24:19Z
dc.date.issued 2006 en
dc.identifier.issn 0013-0915 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17218
dc.subject Asymptotic and numerical estimates en
dc.subject Blow-up en
dc.subject Estimates of blow-up time en
dc.subject Non-local hyperbolic equations en
dc.subject.classification Mathematics en
dc.subject.other THERMISTOR PROBLEM en
dc.subject.other EQUATIONS en
dc.subject.other CONDUCTIVITY en
dc.subject.other TEMPERATURE en
dc.subject.other EXISTENCE en
dc.subject.other MIXTURES en
dc.title Estimates of blow-up time for a non-local reactive-convective problem modelling ohmic heating of foods en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0013091504001610 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0013091504001610 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this work, we estimate the blow-up time for the non-local hyperbolic equation of ohmic type, u(t) + u(x) = lambda f(u)/(integral(1)(0) f(u) dx)(2), together with initial and boundary conditions. It is known that, for f(s), -f'(s) positive and integral(infinity)(0) f(s) ds < infinity, there exists a critical value of the parameter lambda > 0, say lambda*, such that for lambda > lambda* there is no stationary solution and the solution u(x,t) blows up globally in finite time t*, while for lambda <= lambda* there exist stationary solutions. Moreover, the solution u(x, t) also blows up for large enough initial data and lambda <= lambda*. Thus, estimates for t* were found either for lambda greater than the critical value lambda* and fixed initial data u(0)(x) >= 0, or for u(0)(x) greater than the greatest steady-state solution (denoted by w(2) >= w*) and fixed lambda <= lambda*. The estimates are obtained by comparison, by asymptotic and by numerical methods. Finally, amongst the other results, for given A, A* and 0 < lambda - lambda* << 1, estimates of the following form were found: upper bound epsilon + c(1) ln[c(2)(lambda - lambda*)(-1)]; lower bound c(3)(lambda - lambda*)(-1/2); asymptotic estimate t* similar to c(4)(lambda - lambda*)(-1/2) for f(s) = e(-s). Moreover, for 0 < lambda <= lambda* and given initial data u(0)(x) greater than the greatest steady-state solution w(2)(x), we have upper estimates: either c(5) ln(c(6)A(0)(-1) + 1) or epsilon + c(7) ln(c(8)zeta(-1)), where A(0), zeta measure, in some sense, the difference u(0) - w(2) (if u(0) --> w(2)+: then A(0), zeta --> 0+). c(i) > 0 are some constants and 0 < epsilon << 1, 0 < A(0), zeta. Some numerical results are also given. en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName Proceedings of the Edinburgh Mathematical Society en
dc.identifier.doi 10.1017/S0013091504001610 en
dc.identifier.isi ISI:000235872500014 en
dc.identifier.volume 49 en
dc.identifier.issue 1 en
dc.identifier.spage 215 en
dc.identifier.epage 239 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής