dc.contributor.author |
Thireou, T |
en |
dc.contributor.author |
Rubio Guivernau, JL |
en |
dc.contributor.author |
Atlamazoglou, V |
en |
dc.contributor.author |
Ledesma, MJ |
en |
dc.contributor.author |
Pavlopoulos, S |
en |
dc.contributor.author |
Santos, A |
en |
dc.contributor.author |
Kontaxakis, G |
en |
dc.date.accessioned |
2014-03-01T01:24:20Z |
|
dc.date.available |
2014-03-01T01:24:20Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0168-9002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17222 |
|
dc.subject |
Dynamic positron-emission tomography |
en |
dc.subject |
Independent component analysis |
en |
dc.subject |
Principal component analysis |
en |
dc.subject |
Similarity mapping |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.classification |
Nuclear Science & Technology |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.classification |
Spectroscopy |
en |
dc.subject.other |
Independent component analysis |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Positron emission tomography |
en |
dc.subject.other |
Principal component analysis |
en |
dc.subject.other |
Respiratory system |
en |
dc.subject.other |
Dynamic positron emission tomography |
en |
dc.subject.other |
Lesions |
en |
dc.subject.other |
Similarity mapping |
en |
dc.subject.other |
Visual inspection |
en |
dc.subject.other |
Data reduction |
en |
dc.title |
Evaluation of data reduction methods for dynamic PET series based on Monte Carlo techniques and the NCAT phantom |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.nima.2006.08.112 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.nima.2006.08.112 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A realistic dynamic positron-emission tomography (PET) thoracic study was generated, using the 4D NURBS-based (non-uniform rational B-splines) cardiac-torso (NCAT) phantom and a sophisticated model of the PET imaging process, simulating two solitary pulmonary nodules. Three data reduction and blind source separation methods were applied to the simulated data: principal component analysis, independent component analysis and similarity mapping. All methods reduced the initial amount of image data to a smaller, comprehensive and easily managed set of parametric images, where structures were separated based on their different kinetic characteristics and the lesions were readily identified. The results indicate that the above-mentioned methods can provide an accurate tool for the support of both visual inspection and subsequent detailed kinetic analysis of the dynamic series via compartmental or noncompartmental models. (c) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
en |
dc.identifier.doi |
10.1016/j.nima.2006.08.112 |
en |
dc.identifier.isi |
ISI:000243241300053 |
en |
dc.identifier.volume |
569 |
en |
dc.identifier.issue |
2 SPEC. ISS. |
en |
dc.identifier.spage |
389 |
en |
dc.identifier.epage |
393 |
en |