HEAL DSpace

Evaluation of data reduction methods for dynamic PET series based on Monte Carlo techniques and the NCAT phantom

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Thireou, T en
dc.contributor.author Rubio Guivernau, JL en
dc.contributor.author Atlamazoglou, V en
dc.contributor.author Ledesma, MJ en
dc.contributor.author Pavlopoulos, S en
dc.contributor.author Santos, A en
dc.contributor.author Kontaxakis, G en
dc.date.accessioned 2014-03-01T01:24:20Z
dc.date.available 2014-03-01T01:24:20Z
dc.date.issued 2006 en
dc.identifier.issn 0168-9002 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17222
dc.subject Dynamic positron-emission tomography en
dc.subject Independent component analysis en
dc.subject Principal component analysis en
dc.subject Similarity mapping en
dc.subject.classification Instruments & Instrumentation en
dc.subject.classification Nuclear Science & Technology en
dc.subject.classification Physics, Particles & Fields en
dc.subject.classification Spectroscopy en
dc.subject.other Independent component analysis en
dc.subject.other Monte Carlo methods en
dc.subject.other Positron emission tomography en
dc.subject.other Principal component analysis en
dc.subject.other Respiratory system en
dc.subject.other Dynamic positron emission tomography en
dc.subject.other Lesions en
dc.subject.other Similarity mapping en
dc.subject.other Visual inspection en
dc.subject.other Data reduction en
dc.title Evaluation of data reduction methods for dynamic PET series based on Monte Carlo techniques and the NCAT phantom en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.nima.2006.08.112 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.nima.2006.08.112 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A realistic dynamic positron-emission tomography (PET) thoracic study was generated, using the 4D NURBS-based (non-uniform rational B-splines) cardiac-torso (NCAT) phantom and a sophisticated model of the PET imaging process, simulating two solitary pulmonary nodules. Three data reduction and blind source separation methods were applied to the simulated data: principal component analysis, independent component analysis and similarity mapping. All methods reduced the initial amount of image data to a smaller, comprehensive and easily managed set of parametric images, where structures were separated based on their different kinetic characteristics and the lesions were readily identified. The results indicate that the above-mentioned methods can provide an accurate tool for the support of both visual inspection and subsequent detailed kinetic analysis of the dynamic series via compartmental or noncompartmental models. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment en
dc.identifier.doi 10.1016/j.nima.2006.08.112 en
dc.identifier.isi ISI:000243241300053 en
dc.identifier.volume 569 en
dc.identifier.issue 2 SPEC. ISS. en
dc.identifier.spage 389 en
dc.identifier.epage 393 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής