HEAL DSpace

Evaluation of relevance feedback schemes in content-based in retrieval systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.contributor.author Doulamis, A en
dc.date.accessioned 2014-03-01T01:24:21Z
dc.date.available 2014-03-01T01:24:21Z
dc.date.issued 2006 en
dc.identifier.issn 0923-5965 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17227
dc.subject Content-based retrieval en
dc.subject Optimization en
dc.subject Relevance feedback en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Feedback en
dc.subject.other Learning systems en
dc.subject.other Mathematical models en
dc.subject.other Multimedia systems en
dc.subject.other Online systems en
dc.subject.other Semantics en
dc.subject.other User interfaces en
dc.subject.other Adaptive learning strategies en
dc.subject.other Content management systems en
dc.subject.other Feedback algorithms en
dc.subject.other Relevance feedback en
dc.subject.other Content based retrieval en
dc.title Evaluation of relevance feedback schemes in content-based in retrieval systems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.image.2005.11.006 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.image.2005.11.006 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Multimedia content modeling, i.e., identification of semantically meaningful entities, is an arduous task mainly due to the fact that (a) humans perceive the content using high-level concepts and (b) the subjectivity of human perception, which often interprets the same content in a different way at different times. For this reason, an efficient content management system has to be adapted to current user's information needs and preferences through an on-line learning strategy based on users' interaction. One adaptive learning strategy is relevance feedback, originally developed in traditional text-based information retrieval systems. In this way, the user interacts with the system to provide information about the relevance of the content, which is then fed back to the system to update its performance. In this paper, we evaluate and investigate three main types of relevance feedback algorithms; the Euclidean, the query point movements and the correlation-based approaches. In the first case, we examine heuristic and optimal techniques which are based either on the weighted or the generalized Euclidean distance. In the second case, we survey single and multipoint query movement schemes. As far as the third type is concerned, two different ways for parametrizing the normalized cross-correlation similarity metric are proposed. The first scales only the elements of the query feature vector and called query-scaling strategy, while the second scales both the query and the selected samples (query-sample scaling strategy). All the examined algorithms are evaluated using both subjective and objective criteria. Subjective evaluation is performed by depicting the best retrieved images as response of the system to a user's query. Instead, objective evaluation is obtained using standard criteria, such as the precision-recall curve and the average normalized modified retrieval rank (ANMRR). Furthermore, a newly objective criterion, called average normalized similarity metric distance is introduced which exploits the difference among the actual and ideal similarity measure among all best retrievals. Discussions and comparisons of all the aforementioned relevance feedback algorithms are presented. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Signal Processing: Image Communication en
dc.identifier.doi 10.1016/j.image.2005.11.006 en
dc.identifier.isi ISI:000237766900006 en
dc.identifier.volume 21 en
dc.identifier.issue 4 en
dc.identifier.spage 334 en
dc.identifier.epage 357 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής