HEAL DSpace

Evolutionary design of 2-dimensional recursive filters via the computer language GENETICA

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gonos, IF en
dc.contributor.author Virirakis, LI en
dc.contributor.author Mastorakis, NE en
dc.contributor.author Swamy, MNS en
dc.date.accessioned 2014-03-01T01:24:22Z
dc.date.available 2014-03-01T01:24:22Z
dc.date.issued 2006 en
dc.identifier.issn 1057-7130 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17233
dc.subject 2-D systems en
dc.subject Constrained optimization en
dc.subject Evolutionary computational system en
dc.subject Two-dimensional (2-D) recursive filters en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Evolutionary computational system en
dc.subject.other GENETICA en
dc.subject.other Recursive digital filters en
dc.subject.other Two dimensional (2-D) recursive filters en
dc.subject.other Computational methods en
dc.subject.other Constrained optimization en
dc.subject.other Evolutionary algorithms en
dc.subject.other Formal languages en
dc.subject.other Logic design en
dc.subject.other Recursive functions en
dc.subject.other Digital filters en
dc.title Evolutionary design of 2-dimensional recursive filters via the computer language GENETICA en
heal.type journalArticle en
heal.identifier.primary 10.1109/TCSII.2005.862040 en
heal.identifier.secondary http://dx.doi.org/10.1109/TCSII.2005.862040 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, we present a new design method for a class of two-dimensional (2-D) recursive digital filters using an evolutionary computational system. The design of the 2-D filter is reduced to a constrained minimization problem the solution of which is achieved by the convergence of an appropriate evolutionary algorithm. In our approach, the genotypes of potential solutions have a uniform probability within the region of the search space specified by the constraints and zero probability outside this region. This approach is particularly effective as the evolutionary search considers only those potential solutions that respect the constraints. We use the computer language GENETICA, which provides the expressive power necessary to get an accurate problem formulation and supports an adjustable evolutionary computational system. Results of this procedure are illustrated by a numerical example, and compared with those of some previous designs. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Circuits and Systems II: Express Briefs en
dc.identifier.doi 10.1109/TCSII.2005.862040 en
dc.identifier.isi ISI:000236891400002 en
dc.identifier.volume 53 en
dc.identifier.issue 4 en
dc.identifier.spage 254 en
dc.identifier.epage 258 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής