dc.contributor.author |
Gonos, IF |
en |
dc.contributor.author |
Virirakis, LI |
en |
dc.contributor.author |
Mastorakis, NE |
en |
dc.contributor.author |
Swamy, MNS |
en |
dc.date.accessioned |
2014-03-01T01:24:22Z |
|
dc.date.available |
2014-03-01T01:24:22Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1057-7130 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17233 |
|
dc.subject |
2-D systems |
en |
dc.subject |
Constrained optimization |
en |
dc.subject |
Evolutionary computational system |
en |
dc.subject |
Two-dimensional (2-D) recursive filters |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Evolutionary computational system |
en |
dc.subject.other |
GENETICA |
en |
dc.subject.other |
Recursive digital filters |
en |
dc.subject.other |
Two dimensional (2-D) recursive filters |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Constrained optimization |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Formal languages |
en |
dc.subject.other |
Logic design |
en |
dc.subject.other |
Recursive functions |
en |
dc.subject.other |
Digital filters |
en |
dc.title |
Evolutionary design of 2-dimensional recursive filters via the computer language GENETICA |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TCSII.2005.862040 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TCSII.2005.862040 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this paper, we present a new design method for a class of two-dimensional (2-D) recursive digital filters using an evolutionary computational system. The design of the 2-D filter is reduced to a constrained minimization problem the solution of which is achieved by the convergence of an appropriate evolutionary algorithm. In our approach, the genotypes of potential solutions have a uniform probability within the region of the search space specified by the constraints and zero probability outside this region. This approach is particularly effective as the evolutionary search considers only those potential solutions that respect the constraints. We use the computer language GENETICA, which provides the expressive power necessary to get an accurate problem formulation and supports an adjustable evolutionary computational system. Results of this procedure are illustrated by a numerical example, and compared with those of some previous designs. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Circuits and Systems II: Express Briefs |
en |
dc.identifier.doi |
10.1109/TCSII.2005.862040 |
en |
dc.identifier.isi |
ISI:000236891400002 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
254 |
en |
dc.identifier.epage |
258 |
en |