dc.contributor.author |
Tsalamengas, JL |
en |
dc.date.accessioned |
2014-03-01T01:24:24Z |
|
dc.date.available |
2014-03-01T01:24:24Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17242 |
|
dc.subject |
Integral equations |
en |
dc.subject |
Integrodifferential equations |
en |
dc.subject |
Nyström method |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Integrodifferential equations |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Microstrip antennas |
en |
dc.subject.other |
Slot antennas |
en |
dc.subject.other |
Discretization procedures |
en |
dc.subject.other |
Finite sums |
en |
dc.subject.other |
Kernels |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.title |
Exponentially converging Nyström's methods for systems of singular integral equations with applications to open/closed strip- or slot-loaded 2-D structures |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TAP.2006.874348 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAP.2006.874348 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This paper concerns the fast, highly accurate, and exponentially convergent solution of three sets of integral equations pertaining to two-dimensional generalized microstrip or microslot structures. The analysis relies on Nyström's method with due regard to all singular integrals and slowly converging series that appear in the kernels; the sophisticated treatment and efficient computation of such series and integrals is of paramount importance, entailing the use of advanced techniques. As a result of our specialized treatment, the discretization procedures developed herein: a) fully account for both the singular nature of the kernels and the singularities of the solution at the edges; b) obviate the need for taking inner products with testing functions; c) appear to converge exponentially versus matrix size; and d) enable expressing all matrix elements via single, finite sums. Detailed numerical examples and case studies illustrate the simplicity, flexibility, and remarkable efficiency of the algorithms. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/TAP.2006.874348 |
en |
dc.identifier.isi |
ISI:000237603200022 |
en |
dc.identifier.volume |
54 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1549 |
en |
dc.identifier.epage |
1558 |
en |