HEAL DSpace

Extending the Q system's prediction of support in tunnels employing fuzzy logic and extra parameters

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzamos, S en
dc.contributor.author Sofianos, AI en
dc.date.accessioned 2014-03-01T01:24:24Z
dc.date.available 2014-03-01T01:24:24Z
dc.date.issued 2006 en
dc.identifier.issn 1365-1609 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17243
dc.subject Classification en
dc.subject Fuzzy logic en
dc.subject Q system en
dc.subject Rock mass en
dc.subject Tunnel support en
dc.subject.classification Engineering, Geological en
dc.subject.classification Mining & Mineral Processing en
dc.subject.other Fuzzy sets en
dc.subject.other Numerical analysis en
dc.subject.other Rocks en
dc.subject.other Statistical methods en
dc.subject.other Strength of materials en
dc.subject.other Fuzzy expert system en
dc.subject.other Rock mass classification en
dc.subject.other Tunnels en
dc.subject.other computer simulation en
dc.subject.other fuzzy mathematics en
dc.subject.other Q system en
dc.subject.other rock mass classification en
dc.subject.other support en
dc.subject.other tunnel en
dc.subject.other underground construction en
dc.title Extending the Q system's prediction of support in tunnels employing fuzzy logic and extra parameters en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijrmms.2006.02.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijrmms.2006.02.002 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Rock mass classifications predict support measures according to expert rules by rating rock mass and taking into account the span of the opening. A similar procedure is adopted, in this work, and computerized using statistics and fuzzy logic. Fuzzy expert systems are trained with data of previously constructed underground openings. Using subtractive clustering the systems have the intelligence to pick up the relations between input and output and define the rules that represent the system's behavior automatically. These systems are found to predict support to be used more successfully than the Q system. With the introduction of extra input variables, which are important in numerical analysis, such as depth and intact rock strength, an extended fuzzy system is developed. This system is suggested for preliminary use as it is able to predict support even better. (c) 2006 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Rock Mechanics and Mining Sciences en
dc.identifier.doi 10.1016/j.ijrmms.2006.02.002 en
dc.identifier.isi ISI:000238823800008 en
dc.identifier.volume 43 en
dc.identifier.issue 6 en
dc.identifier.spage 938 en
dc.identifier.epage 949 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής