HEAL DSpace

Extreme value predictions based on nonstationary time series of wave data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stefanakos, CN en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T01:24:24Z
dc.date.available 2014-03-01T01:24:24Z
dc.date.issued 2006 en
dc.identifier.issn 1180-4009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17244
dc.subject Extreme values en
dc.subject Mean number of upcrossings en
dc.subject Nonstationary time series data en
dc.subject Return period en
dc.subject Significant wave height en
dc.subject Simulated data en
dc.subject.classification Environmental Sciences en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Statistics & Probability en
dc.subject.other extreme event en
dc.subject.other return period en
dc.subject.other wave height en
dc.title Extreme value predictions based on nonstationary time series of wave data en
heal.type journalArticle en
heal.identifier.primary 10.1002/env.742 en
heal.identifier.secondary http://dx.doi.org/10.1002/env.742 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A new method for calculating return periods of various level values from nonstationary time series data is presented. The key idea of the method is a new definition of the return period, based on the MEan Number of Upcrossings of the level x* (MENU method). In the present article, the case of Gaussian periodically correlated time series is studied in detail. The whole procedure is numerically implemented and applied to synthetic wave data in order to test the stability of the method. Results obtained by using several variants of traditional methods (Gumbel's approach and the POT method) are also presented for comparison purposes. The results of the MENU method showed an extraordinary stability, in contrast to the wide variability of the traditional methods. The predictions obtained by means of the MENU method are lower than the traditional predictions. This is in accordance with the results of other methods that also take into account the dependence structure of the examined time series. Copyright (c) 2005 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName Environmetrics en
dc.identifier.doi 10.1002/env.742 en
dc.identifier.isi ISI:000234703200003 en
dc.identifier.volume 17 en
dc.identifier.issue 1 en
dc.identifier.spage 25 en
dc.identifier.epage 46 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής