HEAL DSpace

Feeble interfaces in bimaterials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kattis, MA en
dc.contributor.author Mavroyannis, G en
dc.date.accessioned 2014-03-01T01:24:24Z
dc.date.available 2014-03-01T01:24:24Z
dc.date.issued 2006 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17247
dc.subject Constitutive Law en
dc.subject Correspondence Problem en
dc.subject Dislocations en
dc.subject Heat Conduction en
dc.subject Heat Flow en
dc.subject Potential Function en
dc.subject Stress Field en
dc.subject Shear Stress en
dc.subject.classification Mechanics en
dc.subject.other Functions en
dc.subject.other Mathematical models en
dc.subject.other Matrix algebra en
dc.subject.other Problem solving en
dc.subject.other Shear stress en
dc.subject.other Two phase flow en
dc.subject.other Bimaterials en
dc.subject.other Constitutive relationships en
dc.subject.other Dislocation problems en
dc.subject.other Temperature control en
dc.title Feeble interfaces in bimaterials en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00707-006-0317-8 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00707-006-0317-8 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In the present paper, the thermal and thermo-elastic response of a bi-material to temperature changes is analyzed, when its interface exhibits a simultaneous weakness in traction transferring and heat flow conducting (feeble interface). Such a pathological behavior of an interface is described by two sets of constitutive relationships relating the heat flow passing through the interface to the temperature jump and the interfacial components of the traction to those of the displacement jump. The bimaterial model considered is that of a circular inhomogeneity in an elastic matrix with linear forms of the constitutive relationships. When the solutions of both heat conduction and thermoelastic problems with a perfect interface are known, the corresponding problems with a feeble interface are reduced to the solution of two dislocation problems: a heat conduction problem with an appropriate temperature dislocation applied across the interface, and an elasticity problem with an appropriate displacement dislocation of Somigliana type acting across the interface. For both dislocation problems, general representations of their solutions in terms of two-phase potential functions of complex variables are provided. Detailed analytical results are given for a circular inhomogeneity with a feeble interface disturbing a linear distribution of the temperature change in the matrix. In this case, the stress field within the inhomogeneity has a linear distribution and it vanishes for the limiting case of a sliding interface. For a specific value of the interface parameter H, which characterizes the thermal imperfection, there are no shear stresses within the inhomogeneity. Finally, since the constitutive laws describing the thermal and mechanical interface behavior correlate tensors of different order, the resulting fields in the system are drastically affected by the inhomogeneity size. en
heal.publisher SPRINGER WIEN en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/s00707-006-0317-8 en
dc.identifier.isi ISI:000239041200002 en
dc.identifier.volume 185 en
dc.identifier.issue 1-2 en
dc.identifier.spage 11 en
dc.identifier.epage 29 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής