dc.contributor.author |
Adam, M |
en |
dc.contributor.author |
Maroulas, J |
en |
dc.date.accessioned |
2014-03-01T01:24:28Z |
|
dc.date.available |
2014-03-01T01:24:28Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0361-0926 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17270 |
|
dc.subject |
Canonical correlation |
en |
dc.subject |
Projectors |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Correlation methods |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Canonical correlations |
en |
dc.subject.other |
Subspaces |
en |
dc.subject.other |
Matrix algebra |
en |
dc.title |
Geometry in canonical correlations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03610920600853522 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03610920600853522 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this article, a useful proposition relating the canonical correlations in multi-way layout to the singular values of a specific matrix is proved and also a geometrical explanation of canonical correlations as an angle between subspaces is given. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Communications in Statistics - Theory and Methods |
en |
dc.identifier.doi |
10.1080/03610920600853522 |
en |
dc.identifier.isi |
ISI:000242711600011 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
2263 |
en |
dc.identifier.epage |
2273 |
en |