dc.contributor.author |
Kountzakis, C |
en |
dc.contributor.author |
Polyrakis, IA |
en |
dc.date.accessioned |
2014-03-01T01:24:28Z |
|
dc.date.available |
2014-03-01T01:24:28Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17271 |
|
dc.subject |
Bases for cones |
en |
dc.subject |
Denting points |
en |
dc.subject |
Pareto efficient points |
en |
dc.subject |
Points of continuity |
en |
dc.subject |
Quasi-interior points |
en |
dc.subject |
Schur property |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
CONICALLY BOUNDED SETS |
en |
dc.subject.other |
OPTIMIZATION |
en |
dc.subject.other |
DENSITY |
en |
dc.subject.other |
DUALITY |
en |
dc.subject.other |
SPACES |
en |
dc.title |
Geometry of cones and an application in the theory of Pareto efficient points |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2005.06.093 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2005.06.093 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this article we give a new criterion for the existence of a bounded base for a cone P of a normed space X. Also, if P is closed, we give a partial answer to the problem: is 0 a point of continuity of P if and only if 0 is a denting point of P? The above problems have applications in the theory of Pareto efficient points. (c) 2005 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2005.06.093 |
en |
dc.identifier.isi |
ISI:000237787400021 |
en |
dc.identifier.volume |
320 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
340 |
en |
dc.identifier.epage |
351 |
en |