dc.contributor.author |
Fayyazuddin, A |
en |
dc.contributor.author |
Husain, TZ |
en |
dc.contributor.author |
Pappa, I |
en |
dc.date.accessioned |
2014-03-01T01:24:28Z |
|
dc.date.available |
2014-03-01T01:24:28Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1550-7998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17272 |
|
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.title |
Geometry of wrapped M5-branes in Calabi-Yau 2-folds |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevD.73.126004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevD.73.126004 |
en |
heal.identifier.secondary |
126004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We study the geometry of M5-branes wrapping a 2-cycle which is special Lagrangian with respect to a specific complex structure in a Calabi-Yau 2-fold. Using methods recently applied to the 3-fold case, we are again able to find a characterization of the geometry, in terms of a nonintegrable almost complex structure and a (2,0) form. This time, however, due to the hyper-Kähler nature of the underlying 2-fold, we also have the freedom of choosing a different almost complex structure with respect to which the wrapped 2-cycle is holomorphic. We show that this latter almost complex structure is integrable. We then relate our geometry to previously found geometries of M5-branes wrapping holomorphic cycles and go further to prove some previously unknown results for M5-branes on holomorphic cycles. © 2006 The American Physical Society. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
Physical Review D - Particles, Fields, Gravitation and Cosmology |
en |
dc.identifier.doi |
10.1103/PhysRevD.73.126004 |
en |
dc.identifier.isi |
ISI:000238698900106 |
en |
dc.identifier.volume |
73 |
en |
dc.identifier.issue |
12 |
en |