dc.contributor.author |
Skoula, ZD |
en |
dc.contributor.author |
Borthwick, AGL |
en |
dc.contributor.author |
Moutzouris, CI |
en |
dc.date.accessioned |
2014-03-01T01:24:28Z |
|
dc.date.available |
2014-03-01T01:24:28Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1061-8562 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17273 |
|
dc.subject |
Adaptive finite volume |
en |
dc.subject |
Godunov |
en |
dc.subject |
Implicit time integration |
en |
dc.subject |
Shallow water equations |
en |
dc.subject |
Unstructured grids |
en |
dc.subject |
Variable bed topography |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
FINITE-VOLUME METHOD |
en |
dc.subject.other |
NAVIER-STOKES EQUATIONS |
en |
dc.subject.other |
SOURCE TERMS |
en |
dc.subject.other |
DAM-BREAK |
en |
dc.subject.other |
MODEL |
en |
dc.subject.other |
FLOW |
en |
dc.subject.other |
SCHEME |
en |
dc.subject.other |
MESHES |
en |
dc.title |
Godunov-type solution of the shallow water equations on adaptive unstructured triangular grids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/10618560601088327 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/10618560601088327 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A Godunov-type upwind finite volume solver of the non-linear shallow water equations is described. The shallow water equations are expressed in a hyperbolic conservation law formulation for application to cases where the bed topography is spatially variable. Inviscid fluxes at cell interfaces are computed using Roe's approximate Riemann solver. Second-order accurate spatial calculations of the fluxes are achieved by enhancing the polynomial approximation of the gradients of conserved variables within each cell. Numerical oscillations are curbed by means of a non-linear slope limiter. Time integration is second-order accurate and implicit. The numerical model is based on dynamically adaptive unstructured triangular grids. Test cases include an oblique hydraulic jump, jet-forced flow in a flat-bottomed circular reservoir, wind-induced circulation in a circular basin of non-uniform bed topography and the collapse of a circular dam. The model is found to give accurate results in comparison with published analytical and alternative numerical solutions. Dynamic grid adaptation and the use of a second-order implicit time integration scheme are found to enhance the computational efficiency of the model. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Computational Fluid Dynamics |
en |
dc.identifier.doi |
10.1080/10618560601088327 |
en |
dc.identifier.isi |
ISI:000245644000003 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
621 |
en |
dc.identifier.epage |
636 |
en |