HEAL DSpace

Godunov-type solution of the shallow water equations on adaptive unstructured triangular grids

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Skoula, ZD en
dc.contributor.author Borthwick, AGL en
dc.contributor.author Moutzouris, CI en
dc.date.accessioned 2014-03-01T01:24:28Z
dc.date.available 2014-03-01T01:24:28Z
dc.date.issued 2006 en
dc.identifier.issn 1061-8562 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17273
dc.subject Adaptive finite volume en
dc.subject Godunov en
dc.subject Implicit time integration en
dc.subject Shallow water equations en
dc.subject Unstructured grids en
dc.subject Variable bed topography en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other FINITE-VOLUME METHOD en
dc.subject.other NAVIER-STOKES EQUATIONS en
dc.subject.other SOURCE TERMS en
dc.subject.other DAM-BREAK en
dc.subject.other MODEL en
dc.subject.other FLOW en
dc.subject.other SCHEME en
dc.subject.other MESHES en
dc.title Godunov-type solution of the shallow water equations on adaptive unstructured triangular grids en
heal.type journalArticle en
heal.identifier.primary 10.1080/10618560601088327 en
heal.identifier.secondary http://dx.doi.org/10.1080/10618560601088327 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A Godunov-type upwind finite volume solver of the non-linear shallow water equations is described. The shallow water equations are expressed in a hyperbolic conservation law formulation for application to cases where the bed topography is spatially variable. Inviscid fluxes at cell interfaces are computed using Roe's approximate Riemann solver. Second-order accurate spatial calculations of the fluxes are achieved by enhancing the polynomial approximation of the gradients of conserved variables within each cell. Numerical oscillations are curbed by means of a non-linear slope limiter. Time integration is second-order accurate and implicit. The numerical model is based on dynamically adaptive unstructured triangular grids. Test cases include an oblique hydraulic jump, jet-forced flow in a flat-bottomed circular reservoir, wind-induced circulation in a circular basin of non-uniform bed topography and the collapse of a circular dam. The model is found to give accurate results in comparison with published analytical and alternative numerical solutions. Dynamic grid adaptation and the use of a second-order implicit time integration scheme are found to enhance the computational efficiency of the model. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName International Journal of Computational Fluid Dynamics en
dc.identifier.doi 10.1080/10618560601088327 en
dc.identifier.isi ISI:000245644000003 en
dc.identifier.volume 20 en
dc.identifier.issue 9 en
dc.identifier.spage 621 en
dc.identifier.epage 636 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής