dc.contributor.author |
Buric, M |
en |
dc.contributor.author |
Madore, J |
en |
dc.contributor.author |
Grammatikopoulos, T |
en |
dc.contributor.author |
Zoupanos, G |
en |
dc.date.accessioned |
2014-03-01T01:24:28Z |
|
dc.date.available |
2014-03-01T01:24:28Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1126-6708 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17275 |
|
dc.subject |
Models of Quantum Gravity |
en |
dc.subject |
Non-Commutative Geometry |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
GEOMETRY |
en |
dc.subject.other |
SPACE |
en |
dc.title |
Gravity and the structure of noncommutative algebras |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1126-6708/2006/04/054 |
en |
heal.identifier.secondary |
054 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1126-6708/2006/04/054 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A gravitational field can be defined in terms of a moving frame, which when made noncommutative yields a preferred basis for a differential calculus. It is conjectured that to a linear perturbation of the commutation relations which define the algebra there corresponds a linear perturbation of the gravitational field. This is shown to be true in the case of a perturbation of Minkowski space-time. © SISSA 2006. |
en |
heal.publisher |
INT SCHOOL ADVANCED STUDIES |
en |
heal.journalName |
Journal of High Energy Physics |
en |
dc.identifier.doi |
10.1088/1126-6708/2006/04/054 |
en |
dc.identifier.isi |
ISI:000237369000005 |
en |
dc.identifier.volume |
2006 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1369 |
en |
dc.identifier.epage |
1384 |
en |