dc.contributor.author |
Dumbrajs, O |
en |
dc.contributor.author |
Kominis, Y |
en |
dc.contributor.author |
Avramides, KA |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.contributor.author |
Vomvoridis, JL |
en |
dc.date.accessioned |
2014-03-01T01:24:29Z |
|
dc.date.available |
2014-03-01T01:24:29Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0093-3813 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17279 |
|
dc.subject |
Gyrotrons |
en |
dc.subject |
Hamiltonian mappings |
en |
dc.subject |
Microwave sources |
en |
dc.subject |
Symplectic integration |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Canonical forms |
en |
dc.subject.other |
Electron dynamics |
en |
dc.subject.other |
Electron trajectories |
en |
dc.subject.other |
Gyrotron resonators |
en |
dc.subject.other |
Integration schemes |
en |
dc.subject.other |
Microwave sources |
en |
dc.subject.other |
Number of iterations |
en |
dc.subject.other |
Numerical algorithms |
en |
dc.subject.other |
Phase-space volumes |
en |
dc.subject.other |
Radio frequencies |
en |
dc.subject.other |
Runge-kutta |
en |
dc.subject.other |
Standard methods |
en |
dc.subject.other |
Successive iterations |
en |
dc.subject.other |
Symplectic integration |
en |
dc.subject.other |
Trajectory calculations |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Electrons |
en |
dc.subject.other |
Gyrotrons |
en |
dc.subject.other |
Meats |
en |
dc.subject.other |
Microwave tubes |
en |
dc.subject.other |
Microwaves |
en |
dc.subject.other |
Phase space methods |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.subject.other |
Hamiltonians |
en |
dc.title |
Hamiltonian map description of electron dynamics in gyrotrons |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPS.2006.875763 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPS.2006.875763 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a symplectic integration scheme. The direct relation of the map to the physics of the model, along with its canonical form (phase space volume preserving) and the significant reduction of the number of iteration steps required for acceptable accuracy, are the main advantages of this method in comparison with standard methods such as Runge-Kutta. The general form of the Hamiltonian map allows for wide applications as a part of several numerical algorithms which incorporate CPU-consuming electron trajectories calculations. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Plasma Science |
en |
dc.identifier.doi |
10.1109/TPS.2006.875763 |
en |
dc.identifier.isi |
ISI:000238582500025 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
3 PART 1 |
en |
dc.identifier.spage |
673 |
en |
dc.identifier.epage |
680 |
en |