HEAL DSpace

Hamiltonian map description of electron dynamics in gyrotrons

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dumbrajs, O en
dc.contributor.author Kominis, Y en
dc.contributor.author Avramides, KA en
dc.contributor.author Hizanidis, K en
dc.contributor.author Vomvoridis, JL en
dc.date.accessioned 2014-03-01T01:24:29Z
dc.date.available 2014-03-01T01:24:29Z
dc.date.issued 2006 en
dc.identifier.issn 0093-3813 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17279
dc.subject Gyrotrons en
dc.subject Hamiltonian mappings en
dc.subject Microwave sources en
dc.subject Symplectic integration en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Canonical forms en
dc.subject.other Electron dynamics en
dc.subject.other Electron trajectories en
dc.subject.other Gyrotron resonators en
dc.subject.other Integration schemes en
dc.subject.other Microwave sources en
dc.subject.other Number of iterations en
dc.subject.other Numerical algorithms en
dc.subject.other Phase-space volumes en
dc.subject.other Radio frequencies en
dc.subject.other Runge-kutta en
dc.subject.other Standard methods en
dc.subject.other Successive iterations en
dc.subject.other Symplectic integration en
dc.subject.other Trajectory calculations en
dc.subject.other Dynamics en
dc.subject.other Electrons en
dc.subject.other Gyrotrons en
dc.subject.other Meats en
dc.subject.other Microwave tubes en
dc.subject.other Microwaves en
dc.subject.other Phase space methods en
dc.subject.other Runge Kutta methods en
dc.subject.other Hamiltonians en
dc.title Hamiltonian map description of electron dynamics in gyrotrons en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPS.2006.875763 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPS.2006.875763 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a symplectic integration scheme. The direct relation of the map to the physics of the model, along with its canonical form (phase space volume preserving) and the significant reduction of the number of iteration steps required for acceptable accuracy, are the main advantages of this method in comparison with standard methods such as Runge-Kutta. The general form of the Hamiltonian map allows for wide applications as a part of several numerical algorithms which incorporate CPU-consuming electron trajectories calculations. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Plasma Science en
dc.identifier.doi 10.1109/TPS.2006.875763 en
dc.identifier.isi ISI:000238582500025 en
dc.identifier.volume 34 en
dc.identifier.issue 3 PART 1 en
dc.identifier.spage 673 en
dc.identifier.epage 680 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής