dc.contributor.author |
Kounadis, AN |
en |
dc.date.accessioned |
2014-03-01T01:24:29Z |
|
dc.date.available |
2014-03-01T01:24:29Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0044-2275 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17280 |
|
dc.subject |
Autonomous |
en |
dc.subject |
Dynamic bifurcations |
en |
dc.subject |
Flutter |
en |
dc.subject |
Hamiltonian systems |
en |
dc.subject |
Jacobian eigenvalues |
en |
dc.subject |
Periodic attractors |
en |
dc.subject |
Weak damping |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
NONCONSERVATIVE SYSTEMS |
en |
dc.subject.other |
DISSIPATIVE SYSTEMS |
en |
dc.subject.other |
CYLINDRICAL-SHELLS |
en |
dc.subject.other |
HOPF BIFURCATIONS |
en |
dc.subject.other |
DIVERGENCE |
en |
dc.subject.other |
STABILITY |
en |
dc.subject.other |
INSTABILITY |
en |
dc.subject.other |
OSCILLATIONS |
en |
dc.subject.other |
DYNAMICS |
en |
dc.subject.other |
FLUTTER |
en |
dc.title |
Hamiltonian weakly damped autonomous systems exhibiting periodic attractors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00033-005-0014-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00033-005-0014-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The dynamic local stability of autonomous Hamiltonian, weakly damped, lumped-mass (discrete) systems is reconsidered. For such potential(conservative) systems conditions for the existence of limit cycles are discussed by studying the effect of the damping matrix on the Jacobian eigenvalues. New findings that contradict existing results are presented. Thus, undamped stable symmetric systems with the inclusion of slight damping may experience: (a) a double zero eigenvalue bifurcation, a degenerate Hopf bifurcation and a generic (usual) Hopf bifurcation, and (b) a limit cycle (dynamic) mode of instability prior to the static (divergence) mode of instability (failure of Zieglers kinetic criterion). A variety of numerical examples verified by a nonlinear analysis confirm the validity of the theoretical findings presented herein. © 2006 Birkhäuser Verlag, Basel. |
en |
heal.publisher |
BIRKHAUSER VERLAG AG |
en |
heal.journalName |
Zeitschrift fur Angewandte Mathematik und Physik |
en |
dc.identifier.doi |
10.1007/s00033-005-0014-9 |
en |
dc.identifier.isi |
ISI:000235739600008 |
en |
dc.identifier.volume |
57 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
324 |
en |
dc.identifier.epage |
349 |
en |