dc.contributor.author |
Park, C-G |
en |
dc.contributor.author |
Rassias, ThM |
en |
dc.date.accessioned |
2014-03-01T01:24:29Z |
|
dc.date.available |
2014-03-01T01:24:29Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17287 |
|
dc.subject |
Hyers-Ulam stability |
en |
dc.subject |
Quadratic mapping of Apollonius type |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
RASSIAS STABILITY |
en |
dc.subject.other |
FUNCTIONAL-EQUATIONS |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.title |
Hyers-Ulam stability of a generalized Apollonius type quadratic mapping |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2005.09.027 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2005.09.027 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Let X,Y be linear spaces. It is shown that if a mapping Q:X→Y satisfies the following functional equation:(0.1)Q((∑i=1nzi)−(∑i=1nxi))+Q((∑i=1nzi)−(∑i=1nyi))=12Q((∑i=1nxi)−(∑i=1nyi))+2Q((∑i=1nzi)−(∑i=1nxi)+(∑i=1nyi)2) then the mapping Q:X→Y is quadratic. We moreover prove the Hyers–Ulam stability of the functional equation (0.1) in Banach spaces. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2005.09.027 |
en |
dc.identifier.isi |
ISI:000238983700030 |
en |
dc.identifier.volume |
322 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
371 |
en |
dc.identifier.epage |
381 |
en |