HEAL DSpace

Knowledge-assisted image analysis based on context and spatial optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, GTh en
dc.contributor.author Mylonas, Ph en
dc.contributor.author Mezaris, V en
dc.contributor.author Avrithis, Y en
dc.contributor.author Kompatsiaris, I en
dc.date.accessioned 2014-03-01T01:24:33Z
dc.date.available 2014-03-01T01:24:33Z
dc.date.issued 2006 en
dc.identifier.issn 1552-6283 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17324
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33750086640&partnerID=40&md5=bf34453e72b7c1f226a01f306ac34527 en
dc.relation.uri http://www.igi-pub.com/articles/details.asp?ID=6444 en
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/journals/ijswis/ijswis2.html#PapadopoulosMMAK06 en
dc.subject Context en
dc.subject Knowledge-assisted analysis en
dc.subject Multimedia ontologies en
dc.subject Semantic annotation en
dc.subject Semantic image analysis en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Information Systems en
dc.subject.other Genetic algorithms en
dc.subject.other Information retrieval en
dc.subject.other Knowledge acquisition en
dc.subject.other Multimedia systems en
dc.subject.other Optimization en
dc.subject.other Semantics en
dc.subject.other Knowledge assisted analysis en
dc.subject.other Multimedia ontology en
dc.subject.other Semantic annotations en
dc.subject.other Semantic image analysis en
dc.subject.other Image analysis en
dc.title Knowledge-assisted image analysis based on context and spatial optimization en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this article, an approach to semantic image analysis is presented. Under the proposed approach, ontologies are used to capture general, spatial, and contextual know ledge of a domain, and a genetic algorithm is applied to realize the final annotation. The employed domain knowledge considers high-level information in terms of the concepts of interest of the examined domain, contextual information in the form of fuzzy ontological relations, as well as low-level information in terms of prototypical low-level visual descriptors. To account for the inherent ambiguity in visual information, uncertainty has been introduced in the spatial relations definition. First, an initial hypothesis set of graded annotations is produced for each image region, and then context is exploited to update appropriately the estimated degrees of confidence. Finally, a genetic algorithm is applied to decide the most plausible annotation by utilizing the visual and the spatial concepts definitions included in the domain ontology. Experiments with a collection of photographs belonging to two different domains demonstrate the performance of the proposed approach. Copyright © 2006, Idea Group Inc. en
heal.publisher IGI PUBLISHING en
heal.journalName Semantic Web and Information Systems en
dc.identifier.isi ISI:000249760100003 en
dc.identifier.volume 2 en
dc.identifier.issue 3 en
dc.identifier.spage 17 en
dc.identifier.epage 36 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής