HEAL DSpace

Large deflection analysis of elastic space membranes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiatas, GC en
dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T01:24:33Z
dc.date.available 2014-03-01T01:24:33Z
dc.date.issued 2006 en
dc.identifier.issn 0029-5981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17327
dc.subject AEM en
dc.subject BEM en
dc.subject Large deflections en
dc.subject Non-linear en
dc.subject Space membranes en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Boundary conditions en
dc.subject.other Elasticity en
dc.subject.other Finite element method en
dc.subject.other Membranes en
dc.subject.other Partial differential equations en
dc.subject.other Poisson equation en
dc.subject.other Variational techniques en
dc.subject.other Analogue equation method (AEM) en
dc.subject.other Elastic space membranes en
dc.subject.other Large deflection analysis en
dc.subject.other Structural analysis en
dc.subject.other Boundary conditions en
dc.subject.other Elasticity en
dc.subject.other Finite element method en
dc.subject.other Membranes en
dc.subject.other Partial differential equations en
dc.subject.other Poisson equation en
dc.subject.other Structural analysis en
dc.subject.other Variational techniques en
dc.title Large deflection analysis of elastic space membranes en
heal.type journalArticle en
heal.identifier.primary 10.1002/nme.1499 en
heal.identifier.secondary http://dx.doi.org/10.1002/nme.1499 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper a solution to the problem of elastic space (initially non-flat) membranes is presented. A new formulation of the governing differential equations is presented in terms of the displacements in the Cartesian co-ordinates. The reference surface of the membrane is the minimal surface. The problem is solved by direct integration of the differential equations using the analogue equation method (AEM). According to this method the three coupled non-linear partial differential equations with variable coefficients are replaced with three uncoupled equivalent linear flat membrane equations (Poisson's equations) subjected to unknown sources under the same boundary conditions. Subsequently, the unknown sources are established using a procedure based on the BEM. The displacements as well as the stress resultants are evaluated at any point of the membrane from their integral representations of the solution of the substitute problems, which are used as mathematical formulae. Several membranes are analysed which illustrate the method and demonstrate its efficiency and accuracy as compared with analytical and existing numerical methods. Copyright (c) 2005 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical Methods in Engineering en
dc.identifier.doi 10.1002/nme.1499 en
dc.identifier.isi ISI:000234692600006 en
dc.identifier.volume 65 en
dc.identifier.issue 2 en
dc.identifier.spage 264 en
dc.identifier.epage 294 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής