HEAL DSpace

Multiband modulation energy tracking for noisy speech detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Evangelopoulos, G en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:24:40Z
dc.date.available 2014-03-01T01:24:40Z
dc.date.issued 2006 en
dc.identifier.issn 1558-7916 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17386
dc.subject Detector evaluation en
dc.subject Energy separation algorithm (ESA) en
dc.subject Modulations en
dc.subject Multiband demodulation en
dc.subject Speech analysis en
dc.subject Speech endpoint detection en
dc.subject Teager energy en
dc.subject Voice activity detection (VAD) en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Energy separation algorithm (ESA) en
dc.subject.other Multiband demodulation en
dc.subject.other Speech endpoint detection en
dc.subject.other Teager energy en
dc.subject.other Voice activity detection (VAD) en
dc.subject.other Amplitude modulation en
dc.subject.other Demodulation en
dc.subject.other Detectors en
dc.subject.other Error detection en
dc.subject.other Frequency bands en
dc.subject.other Optical variables measurement en
dc.subject.other Separation en
dc.subject.other Signal analysis en
dc.subject.other Speech en
dc.subject.other Speech analysis en
dc.subject.other Speech communication en
dc.subject.other Speech transmission en
dc.subject.other Speech recognition en
dc.title Multiband modulation energy tracking for noisy speech detection en
heal.type journalArticle en
heal.identifier.primary 10.1109/TASL.2006.872625 en
heal.identifier.secondary http://dx.doi.org/10.1109/TASL.2006.872625 en
heal.identifier.secondary 1709892 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The ability to accurately locate the boundaries of speech activity is an important attribute of any modern speech recognition, processing, or transmission system. The effort in this paper is the development of efficient, sophisticated features for speech detection in noisy environments, using ideas and techniques from recent advances in speech modeling and analysis, like presence of modulations in speech formants, energy separation and multiband filtering. First we present a method, conceptually based on a classic speech-silence discrimination procedure, that uses some newly developed, short-time signal analysis tools and provide for it a detection theoretic motivation. The new energy and spectral content representations are derived through filtering the signal in various frequency bands, estimating the Teager-Kaiser energy for each and demodulating the most active one in order to derive the signal's dominant AM-FM components. This modulation approach demonstrated an improved robustness in noise over the classic algorithm, reaching an average error reduction of 33.5% under 5-30-dB noise. Second, by incorporating alternative modulation energy features in voice activity detection, improvement in overall misclassification error of a high hit rate detector reached 7.5% and 9.5% on different benchmarks © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Audio, Speech and Language Processing en
dc.identifier.doi 10.1109/TASL.2006.872625 en
dc.identifier.isi ISI:000241567200015 en
dc.identifier.volume 14 en
dc.identifier.issue 6 en
dc.identifier.spage 2024 en
dc.identifier.epage 2038 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής