HEAL DSpace

Multiobjective constrained MPC with simultaneous closed-loop identification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Aggelogiannaki, E en
dc.contributor.author Sarimveis, H en
dc.date.accessioned 2014-03-01T01:24:41Z
dc.date.available 2014-03-01T01:24:41Z
dc.date.issued 2006 en
dc.identifier.issn 08906327 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17391
dc.subject Adaptive control en
dc.subject Closed-loop identification en
dc.subject Model predictive control en
dc.subject Multiobjective optimization en
dc.subject Prediction error method en
dc.subject.other Adaptive control systems en
dc.subject.other Constraint theory en
dc.subject.other Dynamics en
dc.subject.other Functions en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Closed-loop identification en
dc.subject.other Model predictive control en
dc.subject.other Multiobjective optimization en
dc.subject.other Prediction error method en
dc.subject.other Closed loop control systems en
dc.title Multiobjective constrained MPC with simultaneous closed-loop identification en
heal.type journalArticle en
heal.identifier.primary 10.1002/acs.892 en
heal.identifier.secondary http://dx.doi.org/10.1002/acs.892 en
heal.publicationDate 2006 en
heal.abstract Model predictive control (MPC) methodologies are commonly used techniques for constrained control problems. In this paper, the principle of prioritized multiobjective optimization is incorporated in an adaptive MPC framework in order to improve the closed-loop performance in the case of time-varying systems. Instead of weighting the different control goals, the proposed methodology creates a hierarchy according to the importance of each objective and optimizes each one separately. In each optimization step a constraint is added, so that previous in rank objective functions maintain their optimal values. Adaptive capabilities are introduced in the proposed MPC formulation, by considering the persistent excitation requirement as a top priority objective, which is optimized first. The efficiency of the proposed MPC configuration is evaluated through three dynamic processes and the expected advantages are confirmed. Copyright © 2006 John Wiley & Sons, Ltd. en
heal.journalName International Journal of Adaptive Control and Signal Processing en
dc.identifier.doi 10.1002/acs.892 en
dc.identifier.volume 20 en
dc.identifier.issue 4 en
dc.identifier.spage 145 en
dc.identifier.epage 173 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής