dc.contributor.author |
Aggelogiannaki, E |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T01:24:41Z |
|
dc.date.available |
2014-03-01T01:24:41Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
08906327 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17391 |
|
dc.subject |
Adaptive control |
en |
dc.subject |
Closed-loop identification |
en |
dc.subject |
Model predictive control |
en |
dc.subject |
Multiobjective optimization |
en |
dc.subject |
Prediction error method |
en |
dc.subject.other |
Adaptive control systems |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Closed-loop identification |
en |
dc.subject.other |
Model predictive control |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.subject.other |
Prediction error method |
en |
dc.subject.other |
Closed loop control systems |
en |
dc.title |
Multiobjective constrained MPC with simultaneous closed-loop identification |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/acs.892 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/acs.892 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Model predictive control (MPC) methodologies are commonly used techniques for constrained control problems. In this paper, the principle of prioritized multiobjective optimization is incorporated in an adaptive MPC framework in order to improve the closed-loop performance in the case of time-varying systems. Instead of weighting the different control goals, the proposed methodology creates a hierarchy according to the importance of each objective and optimizes each one separately. In each optimization step a constraint is added, so that previous in rank objective functions maintain their optimal values. Adaptive capabilities are introduced in the proposed MPC formulation, by considering the persistent excitation requirement as a top priority objective, which is optimized first. The efficiency of the proposed MPC configuration is evaluated through three dynamic processes and the expected advantages are confirmed. Copyright © 2006 John Wiley & Sons, Ltd. |
en |
heal.journalName |
International Journal of Adaptive Control and Signal Processing |
en |
dc.identifier.doi |
10.1002/acs.892 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
145 |
en |
dc.identifier.epage |
173 |
en |