HEAL DSpace

Multiplicity of nontrivial solutions for elliptic equations with nonsmooth potential and resonance at higher eigenvalues

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Gasinski, L en
dc.contributor.author Motreanu, D en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:24:41Z
dc.date.available 2014-03-01T01:24:41Z
dc.date.issued 2006 en
dc.identifier.issn 0253-4142 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17394
dc.subject Clarke subdifferential en
dc.subject Critical point en
dc.subject Double resonance en
dc.subject Eigenvalue en
dc.subject Hemivariational inequality en
dc.subject Local linking en
dc.subject Locally Lipschitz function en
dc.subject Nonsmooth Cerami condition en
dc.subject Reduction method en
dc.subject.classification Mathematics en
dc.subject.other Clarke subdifferential en
dc.subject.other Critical point en
dc.subject.other Double resonance en
dc.subject.other Hemivariational inequality en
dc.subject.other Local linking en
dc.subject.other Locally Lipschitz function en
dc.subject.other Nonsmooth Cerami condition en
dc.subject.other Reduction method en
dc.subject.other Functions en
dc.subject.other Mathematical models en
dc.subject.other Numerical analysis en
dc.subject.other Resonance en
dc.subject.other Eigenvalues and eigenfunctions en
dc.title Multiplicity of nontrivial solutions for elliptic equations with nonsmooth potential and resonance at higher eigenvalues en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02829789 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02829789 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract We consider a semilinear elliptic equation with a nonsmooth, locally Lipschitz potential function (hemivariational inequality). Our hypotheses permit double resonance at infinity and at zero (double-double resonance situation). Our approach is based on the nonsmooth critical point theory for locally Lipschitz functionals and uses an abstract multiplicity result under local linking and an extension of the Castro-Lazer-Thews reduction method to a nonsmooth setting, which we develop here using tools from nonsmooth analysis. © Printed in India. en
heal.publisher INDIAN ACADEMY SCIENCES en
heal.journalName Proceedings of the Indian Academy of Sciences: Mathematical Sciences en
dc.identifier.doi 10.1007/BF02829789 en
dc.identifier.isi ISI:000238163600008 en
dc.identifier.volume 116 en
dc.identifier.issue 2 en
dc.identifier.spage 233 en
dc.identifier.epage 255 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record