HEAL DSpace

Multiplicity results for nonlinear Neumann problems

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Filippakis, M en
dc.contributor.author Gasinski, L en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:24:41Z
dc.date.available 2014-03-01T01:24:41Z
dc.date.issued 2006 en
dc.identifier.issn 0008-414X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17395
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-32944470126&partnerID=40&md5=b08dacb9a54bdf6746248d73d0b39d20 en
dc.subject Clarke subdifferential en
dc.subject Locally lipschitz function en
dc.subject Neumann problem en
dc.subject Nonsmooth critical point theory en
dc.subject Nonsmooth symmetric mountain pass theorem en
dc.subject P-Laplacian en
dc.subject Second deformation theorem en
dc.subject Strong resonance en
dc.subject.classification Mathematics en
dc.subject.other BOUNDARY-VALUE-PROBLEMS en
dc.subject.other OPERATORS en
dc.subject.other EQUATIONS en
dc.subject.other RESONANCE en
dc.title Multiplicity results for nonlinear Neumann problems en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper we study nonlinear elliptic problems of Neumann type driven by the p-Laplacian differential operator. We look for situations guaranteeing the existence of multiple solutions. First we study problems which are strongly resonant at infinity at the first (zero) eigenvalue. We prove five multiplicity results, four for problems with nonsmooth potential and one for problems with a C1-potential. In the last part, for nonsmooth problems in which the potential eventually exhibits a strict super-p-growth under a symmetry condition, we prove the existence of infinitely many pairs of nontrivial solutions. Our approach is variational based on the critical point theory for nonsmooth functional. Also we present some results concerning the first two elements of the spectrum of the negative p-Laplacian with Neumann boundary condition. ©Canadian Mathematical Society 2006. en
heal.publisher CANADIAN MATHEMATICAL SOC en
heal.journalName Canadian Journal of Mathematics en
dc.identifier.isi ISI:000234814500004 en
dc.identifier.volume 58 en
dc.identifier.issue 1 en
dc.identifier.spage 64 en
dc.identifier.epage 92 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record