HEAL DSpace

Neural network simulation metamodels and genetic algorithms in analysis and design of manufacturing cells

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vosniakos, GC en
dc.contributor.author Tsifakis, A en
dc.contributor.author Benardos, P en
dc.date.accessioned 2014-03-01T01:24:42Z
dc.date.available 2014-03-01T01:24:42Z
dc.date.issued 2006 en
dc.identifier.issn 0268-3768 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17404
dc.subject Artificial neural networks en
dc.subject discrete event simulation en
dc.subject genetic algorithms en
dc.subject manufacturing cells en
dc.subject metamodels en
dc.subject operations optimisation en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Engineering, Manufacturing en
dc.subject.other SYSTEMS en
dc.subject.other SEARCH en
dc.subject.other OPTIMIZATION en
dc.subject.other INTEGRATION en
dc.subject.other HYBRID en
dc.title Neural network simulation metamodels and genetic algorithms in analysis and design of manufacturing cells en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00170-005-2535-y en
heal.identifier.secondary http://dx.doi.org/10.1007/s00170-005-2535-y en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A manufacturing cell can be modelled using discrete event simulation in order to predict its performance under various combinations of input parameters, related to design issues as well as operation issues. Such models suffer from inherent lack of generality and are useful on a case-by-case basis. Therefore, determination of the best values of design and operation parameters in combination cannot be performed rigorously, but only on an experimentation basis. This work proposes a systematic procedure for optimisation. The final stage is an optimisation procedure using a genetic algorithm which uses the classic genetic operators tuned with due care to avoid local maxima of the fitness function. The actual value of the fitness function corresponding to each breeding case could be obtained by running the discrete event simulation application, but that would make for lengthy response. Therefore, a first stage of the optimising procedure is proposed that calculates the essential part of the fitness function by a neural network metamodel generalising on simulation results. Conditions for successful application of the above procedures are discussed. en
heal.publisher SPRINGER LONDON LTD en
heal.journalName INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY en
dc.identifier.doi 10.1007/s00170-005-2535-y en
dc.identifier.isi ISI:000238835400015 en
dc.identifier.volume 29 en
dc.identifier.issue 5 en
dc.identifier.spage 541 en
dc.identifier.epage 550 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής