dc.contributor.author |
Vosniakos, GC
|
en |
dc.contributor.author |
Tsifakis, A
|
en |
dc.contributor.author |
Benardos, P
|
en |
dc.date.accessioned |
2014-03-01T01:24:42Z |
|
dc.date.available |
2014-03-01T01:24:42Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0268-3768 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17404 |
|
dc.subject |
Artificial neural networks |
en |
dc.subject |
discrete event simulation |
en |
dc.subject |
genetic algorithms |
en |
dc.subject |
manufacturing cells |
en |
dc.subject |
metamodels |
en |
dc.subject |
operations optimisation |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Manufacturing |
en |
dc.subject.other |
SYSTEMS |
en |
dc.subject.other |
SEARCH |
en |
dc.subject.other |
OPTIMIZATION |
en |
dc.subject.other |
INTEGRATION |
en |
dc.subject.other |
HYBRID |
en |
dc.title |
Neural network simulation metamodels and genetic algorithms in analysis and design of manufacturing cells |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00170-005-2535-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00170-005-2535-y |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A manufacturing cell can be modelled using discrete event simulation in order to predict its performance under various combinations of input parameters, related to design issues as well as operation issues. Such models suffer from inherent lack of generality and are useful on a case-by-case basis. Therefore, determination of the best values of design and operation parameters in combination cannot be performed rigorously, but only on an experimentation basis. This work proposes a systematic procedure for optimisation. The final stage is an optimisation procedure using a genetic algorithm which uses the classic genetic operators tuned with due care to avoid local maxima of the fitness function. The actual value of the fitness function corresponding to each breeding case could be obtained by running the discrete event simulation application, but that would make for lengthy response. Therefore, a first stage of the optimising procedure is proposed that calculates the essential part of the fitness function by a neural network metamodel generalising on simulation results. Conditions for successful application of the above procedures are discussed. |
en |
heal.publisher |
SPRINGER LONDON LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY |
en |
dc.identifier.doi |
10.1007/s00170-005-2535-y |
en |
dc.identifier.isi |
ISI:000238835400015 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
541 |
en |
dc.identifier.epage |
550 |
en |