dc.contributor.author |
Rigatos, G |
en |
dc.contributor.author |
Tzafestas, S |
en |
dc.date.accessioned |
2014-03-01T01:24:42Z |
|
dc.date.available |
2014-03-01T01:24:42Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1230-1612 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17405 |
|
dc.subject |
Diffusion Equation |
en |
dc.subject |
Feed Forward Neural Network |
en |
dc.subject |
Function Approximation |
en |
dc.subject |
Harmonic Oscillator |
en |
dc.subject |
Hermite Polynomial |
en |
dc.subject |
Nonparametric Estimation |
en |
dc.subject |
System Modelling |
en |
dc.subject |
Feedforward Neural Network |
en |
dc.subject |
Fourier Transform |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.title |
Neural structures using the eigenstates of a quantum harmonic oscillator |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11080-006-7265-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11080-006-7265-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The main result of the paper is the use of orthogonal Hermite polynomials as the basis functions of feedforward neural networks. The proposed neural networks have some interesting properties: (i) the basis functions are invariant under the Fourier transform, subject only to a change of scale, (ii) the basis functions are the eigenstates of the quantum harmonic oscillator, and stem from the solution of Schrödinger's diffusion equation. The proposed feed-forward neural networks demonstrate the particle-wave nature of information and can be used in nonparametric estimation. Possible applications of the proposed neural networks include function approximation, image processing and system modelling. © Springer 2006. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Open Systems and Information Dynamics |
en |
dc.identifier.doi |
10.1007/s11080-006-7265-6 |
en |
dc.identifier.isi |
ISI:000235808600003 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
27 |
en |
dc.identifier.epage |
41 |
en |