dc.contributor.author |
Filippakis, M |
en |
dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:24:45Z |
|
dc.date.available |
2014-03-01T01:24:45Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0033-3883 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17417 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646024645&partnerID=40&md5=e4f6f92d47c63dbd53dc4564cabeb82e |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Locally Lipschitz function |
en |
dc.subject |
Minimax principle |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
Nonsmooth potential |
en |
dc.subject |
Periodic problem |
en |
dc.subject |
Subdifferential |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
MULTIPLICITY |
en |
dc.title |
Nonlinear periodic problems with nonsmooth potential restricted in one direction |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We study a nonlinear periodic problem driven by the ordinary scalar p-Laplacian and with a nonsmooth locally Lipschitz potential. Imposing on the potential a growth restriction only in one direction, we establish the existence of a solution. Our approach is variational based on the nonsmooth critical point theory for locally Lipschitz functions. |
en |
heal.publisher |
KOSSUTH LAJOS TUDOMANYEGYETEM |
en |
heal.journalName |
Publicationes Mathematicae |
en |
dc.identifier.isi |
ISI:000236694500004 |
en |
dc.identifier.volume |
68 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
37 |
en |
dc.identifier.epage |
62 |
en |