dc.contributor.author |
Hadjifotinou, KG |
en |
dc.contributor.author |
Kalvouridis, TJ |
en |
dc.contributor.author |
Gousidou-Koutita, M |
en |
dc.date.accessioned |
2014-03-01T01:24:46Z |
|
dc.date.available |
2014-03-01T01:24:46Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0093-6413 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17424 |
|
dc.subject |
Bifurcations |
en |
dc.subject |
N-body problem |
en |
dc.subject |
Numerical computation of periodic orbits |
en |
dc.subject |
Ring configuration |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Particles (particulate matter) |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
N-body problem |
en |
dc.subject.other |
Numerical computation of periodic orbits |
en |
dc.subject.other |
Ring configuration |
en |
dc.subject.other |
Three-dimensional ring problem |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.title |
Numerical study of the parametric evolution of bifurcations in the three-dimensional ring problem of N bodies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.mechrescom.2006.03.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.mechrescom.2006.03.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We study the dynamics of a massless particle in an annular configuration of N bodies, N - 1 of which have equal masses m and are located in equal distances on a fictitious circle and one has mass beta m and is located at the center of the circle. Our interest is focused on the bifurcation points from planar to three-dimensional families of symmetric periodic orbits in the above problem. We study numerically the evolution of these bifurcation points with respect to the variation of the mass parameter beta. In particular we investigate the continuous evolution of bifurcation points for values of beta from 2 up to 1000. The two distinct cases of the system's behavior at beta = 2 and 1000 are examined comparatively and various conclusions are drawn regarding the overall dynamical evolution of the three-dimensional system as the relative mass of the central body grows. (C) 2006 Published by Elsevier Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Mechanics Research Communications |
en |
dc.identifier.doi |
10.1016/j.mechrescom.2006.03.002 |
en |
dc.identifier.isi |
ISI:000239465000012 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
830 |
en |
dc.identifier.epage |
836 |
en |