dc.contributor.author |
Park, C-G |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:24:46Z |
|
dc.date.available |
2014-03-01T01:24:46Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0304-9914 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17425 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33644804175&partnerID=40&md5=05bdaa1a312c8de627c3d6aafc213b08 |
en |
dc.subject |
C*-algebra homomorphism |
en |
dc.subject |
Cauchy-Rassias stability |
en |
dc.subject |
Lie JC*-algebra derivation |
en |
dc.subject |
Lie JC*-algebra homomorphisrn |
en |
dc.subject |
Trif's functional equation |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ULAM-RASSIAS STABILITY |
en |
dc.subject.other |
FUNCTIONAL-EQUATION |
en |
dc.subject.other |
JENSENS EQUATION |
en |
dc.subject.other |
SPACES |
en |
dc.title |
On a generalized trif's mapping in Banach modules over a c*-algebra |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Let X and Y be vector spaces. It is shown that a mapping f : X --> Y satisfies the functional equation [GRAPHICS] if and only if the mapping f : X --> Y is additive, and we prove the Cauchy-Rassias stability of the functional equation (double dagger) in Banach modules over a unital C*-algebra. Let A and B be unital C*-algebras or Lie JC*-algebras. As an application, we show that every almost homomorphism h: A --> B of A into B is a homomorphism when h(2(d)uy) = h(2(d)u)h(y) or h(2(d)u circle y) = h(2(d)u) circle h(y) for all unitaries u is an element of A, all y is an element of A, and d = 0, 1, 2,..., and that every almost linear almost multiplicative mapping h : A --> B is a homornorphism when h(2x) = 2h(x) for all x is an element of A. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in C*-algebras or in Lie JC*-algebras, and of Lie JC*-algebra derivations in Lie JC*-algebras. |
en |
heal.publisher |
KOREAN MATHEMATICAL SOCIETY |
en |
heal.journalName |
Journal of the Korean Mathematical Society |
en |
dc.identifier.isi |
ISI:000235770200008 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
323 |
en |
dc.identifier.epage |
356 |
en |