dc.contributor.author |
Lazopoulos, KA |
en |
dc.date.accessioned |
2014-03-01T01:24:47Z |
|
dc.date.available |
2014-03-01T01:24:47Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17429 |
|
dc.subject |
Bifurcation |
en |
dc.subject |
Continuum mechanics |
en |
dc.subject |
Large deformations |
en |
dc.subject |
Maxwell's sets |
en |
dc.subject |
Singularities |
en |
dc.subject |
Stability |
en |
dc.subject |
Two-phase strain |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Maxwell equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Shearing |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Bifurcations |
en |
dc.subject.other |
Large deformations |
en |
dc.subject.other |
Maxwell's sets |
en |
dc.subject.other |
Singularities |
en |
dc.subject.other |
Two-phase strain |
en |
dc.subject.other |
Elasticity |
en |
dc.title |
On discontinuous strain fields in finite elastostatics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2005.03.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A general method for the study of piece-wise homogeneous strain fields in finite elasticity is proposed. Critical homogeneous deformations, supporting strain jumping, are defined for any anisotropic elastic material under constant Piola-Kirchhoff stress field in three-dimensional elasticity. Since Maxwell's sets appear in the neighborhood of singularities higher than the fold, the existence of a cusp singularity is a sufficient condition for the emergence of piece-wise constant strain fields. General formulae are derived for the study of any problem without restrictions or fictitious stress-strain laws. The theory is implemented in a simple shearing plane strain problem. Nevertheless, the procedure is valid for any anisotropic material and three-dimensional problems. (c) 2005 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2005.03.009 |
en |
dc.identifier.isi |
ISI:000237402500021 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
11-12 |
en |
dc.identifier.spage |
3643 |
en |
dc.identifier.epage |
3655 |
en |