dc.contributor.author |
Lazopoulos, KA |
en |
dc.date.accessioned |
2014-03-01T01:24:47Z |
|
dc.date.available |
2014-03-01T01:24:47Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17430 |
|
dc.subject |
Bifurcations |
en |
dc.subject |
Continuum mechanics |
en |
dc.subject |
Discontinous strain |
en |
dc.subject |
Finite elasticity |
en |
dc.subject |
Singularities |
en |
dc.subject |
Two phase states |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Maxwell equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Tensors |
en |
dc.subject.other |
Bifurcations |
en |
dc.subject.other |
Discontinous strain |
en |
dc.subject.other |
Finite elasticity |
en |
dc.subject.other |
Two phase states |
en |
dc.subject.other |
Elasticity |
en |
dc.title |
On discontinuous strain fields in incompressible finite elastostatics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2005.07.047 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.047 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Piece-wise homogeneous three-dimensional deformations in incompressible materials in finite elasticity are considered. The emergence of discontinuous strain fields in incompressible materials is studied via singularity theory. Since the simplest singularities, including Maxwell's sets, are the cusp singularities, cusp conditions for the total energy function of homogeneous deformations for incompressible materials in finite elasticity will be derived, compatible with strain jumping. The proposed method yields simple criteria for the study of discontinuous deformations in three-dimensional problems and for any homogeneous incompressible material. Furthermore the homogeneous stress tensor is also not restricted. Neither fictitious nor simplified constitutive relations are invoked. The theory is implemented in a simple shearing problem. (c) 2005 Published by Elsevier Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2005.07.047 |
en |
dc.identifier.isi |
ISI:000238550000018 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
14-15 |
en |
dc.identifier.spage |
4357 |
en |
dc.identifier.epage |
4369 |
en |