dc.contributor.author |
Anestopoulos, CN |
en |
dc.contributor.author |
Argyropoulos, EE |
en |
dc.date.accessioned |
2014-03-01T01:24:48Z |
|
dc.date.available |
2014-03-01T01:24:48Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1446-1811 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17437 |
|
dc.subject |
Electromagnetic transmission |
en |
dc.subject |
Low frequency |
en |
dc.subject |
Scattering theory |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
HELMHOLTZ-EQUATION |
en |
dc.subject.other |
SCATTERING |
en |
dc.title |
On the low frequency asymptotics for the 2-D electromagnetic transmission problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S1446181100009913 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S1446181100009913 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We examine the transmission problem in a two-dimensional domain, which consists of two different homogeneous media. We use boundary integral equation methods on the Maxwell equations governing the two media and we study the behaviour of the solution as the two different wave numbers tend to zero. We prove that as the boundary data of the general transmission problem converge uniformly to the boundary data of the corresponding electrostatic transmission problem, the general solution converges uniformly to the electrostatic one, provided we consider compact subsets of domains. © Australian Mathematical Society 2006. |
en |
heal.publisher |
AUSTRALIAN MATHEMATICS PUBL ASSOC INC |
en |
heal.journalName |
ANZIAM Journal |
en |
dc.identifier.doi |
10.1017/S1446181100009913 |
en |
dc.identifier.isi |
ISI:000236631600007 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
397 |
en |
dc.identifier.epage |
411 |
en |