HEAL DSpace

On the quest for chaotic attractors in hydrological processes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:24:48Z
dc.date.available 2014-03-01T01:24:48Z
dc.date.issued 2006 en
dc.identifier.issn 0262-6667 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17440
dc.subject Attractors en
dc.subject Capacity dimension en
dc.subject Chaos en
dc.subject Chaotic dynamics en
dc.subject Correlation dimension en
dc.subject Entropy en
dc.subject Hydrological processes en
dc.subject Nonlinear analysis en
dc.subject Rainfall en
dc.subject Runoff en
dc.subject Stochastic processes en
dc.subject Time series analysis en
dc.subject.classification Water Resources en
dc.subject.other Chaos theory en
dc.subject.other Estimation en
dc.subject.other Rain en
dc.subject.other Runoff en
dc.subject.other Time series analysis en
dc.subject.other Chaotic analysis en
dc.subject.other Hydrological process en
dc.subject.other Hydrometeorological time series en
dc.subject.other Hydrology en
dc.subject.other chaos theory en
dc.subject.other correlation en
dc.subject.other hydrology en
dc.subject.other hydrometeorology en
dc.subject.other nonlinearity en
dc.subject.other rainfall-runoff modeling en
dc.subject.other stochasticity en
dc.subject.other time series analysis en
dc.title On the quest for chaotic attractors in hydrological processes en
heal.type journalArticle en
heal.identifier.primary 10.1623/hysj.51.6.1065 en
heal.identifier.secondary http://dx.doi.org/10.1623/hysj.51.6.1065 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In the last two decades, several researchers have claimed to have discovered low-dimensional determinism in hydrological processes, such as rainfall and runoff, using methods of chaotic analysis. However, such results have been criticized by others. In an attempt to offer additional insights into this discussion, it is shown here that, in some cases, merely the careful application of concepts of dynamical systems, without doing any calculation, provides strong indications that hydrological processes cannot be (low-dimensional) deterministic chaotic. Furthermore, it is shown that specific peculiarities of hydrological processes on fine time scales, such as asymmetric, J-shaped distribution functions, intermittency, and high autocorrelations, are synergistic factors that can lead to misleading conclusions regarding the presence of (low-dimensional) deterministic chaos. In addition, the recovery of a hypothetical attractor from a time series is put as a statistical estimation problem whose study allows, among others, quantification of the required sample size; this appears to be so huge that it prohibits any accurate estimation, even with the largest available hydrological records. All these arguments are demonstrated using appropriately synthesized theoretical examples. Finally, in light of the theoretical analyses and arguments, typical real-world hydrometeorological time series, such as relative humidity, rainfall, and runoff, are explored and none of them is found to indicate the presence of chaos. Copyright © 2006 IAHS Press. en
heal.publisher IAHS PRESS, INST HYDROLOGY en
heal.journalName Hydrological Sciences Journal en
dc.identifier.doi 10.1623/hysj.51.6.1065 en
dc.identifier.isi ISI:000242939300006 en
dc.identifier.volume 51 en
dc.identifier.issue 6 en
dc.identifier.spage 1065 en
dc.identifier.epage 1091 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής