dc.contributor.author | Koutsoyiannis, D | en |
dc.date.accessioned | 2014-03-01T01:24:48Z | |
dc.date.available | 2014-03-01T01:24:48Z | |
dc.date.issued | 2006 | en |
dc.identifier.issn | 0262-6667 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/17440 | |
dc.subject | Attractors | en |
dc.subject | Capacity dimension | en |
dc.subject | Chaos | en |
dc.subject | Chaotic dynamics | en |
dc.subject | Correlation dimension | en |
dc.subject | Entropy | en |
dc.subject | Hydrological processes | en |
dc.subject | Nonlinear analysis | en |
dc.subject | Rainfall | en |
dc.subject | Runoff | en |
dc.subject | Stochastic processes | en |
dc.subject | Time series analysis | en |
dc.subject.classification | Water Resources | en |
dc.subject.other | Chaos theory | en |
dc.subject.other | Estimation | en |
dc.subject.other | Rain | en |
dc.subject.other | Runoff | en |
dc.subject.other | Time series analysis | en |
dc.subject.other | Chaotic analysis | en |
dc.subject.other | Hydrological process | en |
dc.subject.other | Hydrometeorological time series | en |
dc.subject.other | Hydrology | en |
dc.subject.other | chaos theory | en |
dc.subject.other | correlation | en |
dc.subject.other | hydrology | en |
dc.subject.other | hydrometeorology | en |
dc.subject.other | nonlinearity | en |
dc.subject.other | rainfall-runoff modeling | en |
dc.subject.other | stochasticity | en |
dc.subject.other | time series analysis | en |
dc.title | On the quest for chaotic attractors in hydrological processes | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1623/hysj.51.6.1065 | en |
heal.identifier.secondary | http://dx.doi.org/10.1623/hysj.51.6.1065 | en |
heal.language | English | en |
heal.publicationDate | 2006 | en |
heal.abstract | In the last two decades, several researchers have claimed to have discovered low-dimensional determinism in hydrological processes, such as rainfall and runoff, using methods of chaotic analysis. However, such results have been criticized by others. In an attempt to offer additional insights into this discussion, it is shown here that, in some cases, merely the careful application of concepts of dynamical systems, without doing any calculation, provides strong indications that hydrological processes cannot be (low-dimensional) deterministic chaotic. Furthermore, it is shown that specific peculiarities of hydrological processes on fine time scales, such as asymmetric, J-shaped distribution functions, intermittency, and high autocorrelations, are synergistic factors that can lead to misleading conclusions regarding the presence of (low-dimensional) deterministic chaos. In addition, the recovery of a hypothetical attractor from a time series is put as a statistical estimation problem whose study allows, among others, quantification of the required sample size; this appears to be so huge that it prohibits any accurate estimation, even with the largest available hydrological records. All these arguments are demonstrated using appropriately synthesized theoretical examples. Finally, in light of the theoretical analyses and arguments, typical real-world hydrometeorological time series, such as relative humidity, rainfall, and runoff, are explored and none of them is found to indicate the presence of chaos. Copyright © 2006 IAHS Press. | en |
heal.publisher | IAHS PRESS, INST HYDROLOGY | en |
heal.journalName | Hydrological Sciences Journal | en |
dc.identifier.doi | 10.1623/hysj.51.6.1065 | en |
dc.identifier.isi | ISI:000242939300006 | en |
dc.identifier.volume | 51 | en |
dc.identifier.issue | 6 | en |
dc.identifier.spage | 1065 | en |
dc.identifier.epage | 1091 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |