HEAL DSpace

On the use of metamodel-assisted, multi-objective evolutionary algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karakasis, MK en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:24:48Z
dc.date.available 2014-03-01T01:24:48Z
dc.date.issued 2006 en
dc.identifier.issn 0305-215X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17442
dc.subject evolutionary algorithms en
dc.subject metamodels en
dc.subject multi-objective optimization en
dc.subject pareto front en
dc.subject radial-basis function networks en
dc.subject self-organizing maps en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Operations Research & Management Science en
dc.subject.other OPTIMIZATION en
dc.subject.other NETWORKS en
dc.subject.other SET en
dc.title On the use of metamodel-assisted, multi-objective evolutionary algorithms en
heal.type journalArticle en
heal.identifier.primary 10.1080/03052150600848000 en
heal.identifier.secondary http://dx.doi.org/10.1080/03052150600848000 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This article is concerned with the optimal use of metamodels in the context of multi-objective evolutionary algorithms which are based on computationally expensive function evaluations. The goal is to capture Pareto fronts of optimal solutions with the minimum computational cost. In each generation during the evolution, the metamodels act as filters that distinguish the most promising individuals, which will solely undergo exact and costly evaluations. By means of the so-called inexact pre-evaluation phase, based on continuously updated local metamodels, most of the non-promising individuals are put aside without aggravating the overall cost. The gain achieved through this technique is amazing in single-objective problems. However, with more than one objective, noticeable performance degradation occurs. This article scrutinizes the role of metamodels in multi-objective evolutionary algorithms and proposes ways to overcome expected weaknesses and improve their performance. Minimization of mathematical functions as well as aerodynamic shape optimization problems are used for demonstration purposes. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName ENGINEERING OPTIMIZATION en
dc.identifier.doi 10.1080/03052150600848000 en
dc.identifier.isi ISI:000241435800005 en
dc.identifier.volume 38 en
dc.identifier.issue 8 en
dc.identifier.spage 941 en
dc.identifier.epage 957 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής