dc.contributor.author |
Nikolaki, MD |
en |
dc.contributor.author |
Malamis, D |
en |
dc.contributor.author |
Poulopoulos, SG |
en |
dc.contributor.author |
Philippopoulos, CJ |
en |
dc.date.accessioned |
2014-03-01T01:24:51Z |
|
dc.date.available |
2014-03-01T01:24:51Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0304-3894 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17468 |
|
dc.subject |
1,3-Dichloro-2-propanol |
en |
dc.subject |
Hydrogen peroxide |
en |
dc.subject |
Immobilized titanium dioxide |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Chloroacetic acid |
en |
dc.subject.other |
Immobilized titanium dioxide |
en |
dc.subject.other |
Ion mass balance calculations |
en |
dc.subject.other |
Total organic carbon (TOC) |
en |
dc.subject.other |
Chemical reactors |
en |
dc.subject.other |
Degradation |
en |
dc.subject.other |
Hydrogen peroxide |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Photocatalysis |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
Alcohols |
en |
dc.subject.other |
1,3 dichloro 2 propanol |
en |
dc.subject.other |
acetic acid |
en |
dc.subject.other |
carbon |
en |
dc.subject.other |
chloride ion |
en |
dc.subject.other |
chloroacetic acid |
en |
dc.subject.other |
formic acid |
en |
dc.subject.other |
hydrogen peroxide |
en |
dc.subject.other |
titanium dioxide |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
Alcohols |
en |
dc.subject.other |
Chemical reactors |
en |
dc.subject.other |
Degradation |
en |
dc.subject.other |
Hydrogen peroxide |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Photocatalysis |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
aqueous solution |
en |
dc.subject.other |
bioreactor |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
degradation |
en |
dc.subject.other |
organic carbon |
en |
dc.subject.other |
organic compound |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
ultraviolet radiation |
en |
dc.subject.other |
aqueous solution |
en |
dc.subject.other |
article |
en |
dc.subject.other |
batch reactor |
en |
dc.subject.other |
catalyst |
en |
dc.subject.other |
chlorination |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
photocatalysis |
en |
dc.subject.other |
room temperature |
en |
dc.subject.other |
total organic carbon |
en |
dc.subject.other |
ultraviolet radiation |
en |
dc.subject.other |
alpha-Chlorohydrin |
en |
dc.subject.other |
Catalysis |
en |
dc.subject.other |
Hydrogen Peroxide |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
Titanium |
en |
dc.subject.other |
Ultraviolet Rays |
en |
dc.subject.other |
Water |
en |
dc.title |
Photocatalytical degradation of 1,3-dichloro-2-propanol aqueous solutions by using an immobilized TiO2 photoreactor |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jhazmat.2006.04.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jhazmat.2006.04.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The photocatalytic oxidation of 1,3-dichloro-2-propanol (1,3-DCP) was studied by following the target compound degradation, the total organic carbon removal rate and by identifying the oxidation products. The reaction was performed in a batch recycle reactor, at room temperature, using UV radiation, H2O2 as oxidant, and immobilized TiO2 as catalyst. 1,3-Dichloro-2-propanone, chloroacetyl-chloride, chloroacetic acid, formic and acetic acid were detected as reaction intermediates and a possible pathway for the oxidation of 1,3-dichloro-2-propanol is proposed. The effect of the oxidative agent's initial concentration was investigated and it was established that higher concentrations of H2O2 slow down the reaction rate. The investigation of the effect of the 1,3-DCP initial concentration showed no influence on the degradation process. The carbon and chloride ion mass balance calculations confirmed the fact that chlorinated intermediates are formed and that they degrade with a lower rate than 1,3-DCP. (c) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Hazardous Materials |
en |
dc.identifier.doi |
10.1016/j.jhazmat.2006.04.002 |
en |
dc.identifier.isi |
ISI:000241135200062 |
en |
dc.identifier.volume |
137 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
1189 |
en |
dc.identifier.epage |
1196 |
en |