dc.contributor.author |
Katsikis, V |
en |
dc.contributor.author |
Polyrakis, IA |
en |
dc.date.accessioned |
2014-03-01T01:24:52Z |
|
dc.date.available |
2014-03-01T01:24:52Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0039-3223 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17476 |
|
dc.subject |
Positive bases |
en |
dc.subject |
Quasi-interior points |
en |
dc.subject |
Riesz decomposition property |
en |
dc.subject |
Unconditional bases |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.title |
Positive bases in ordered subspaces with the Riesz decomposition property |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.4064/sm174-3-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.4064/sm174-3-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this article we suppose that E is an ordered Banach space whose positive cone is defined by a countable family F = {f(i) vertical bar i is an element of N} of positive continuous linear functionals on E, i.e. E+ = {x is an element of E vertical bar f(i)(x) >= 0 for each i}, and we study the existence of positive (Schauder) bases in ordered subspaces X of E with the Riesz decomposition property. We consider the elements x of E as sequences x = (f(i)(x)) and we develop a process of successive decompositions of a quasi-interior point of X+ which at each step gives elements with smaller support. As a result we obtain elements of X+ with minimal support and we prove that they define a positive basis of X which is also unconditional. In the first section we study ordered normed spaces with the Riesz decomposition property. |
en |
heal.publisher |
POLISH ACAD SCIENCES INST MATHEMATICS |
en |
heal.journalName |
Studia Mathematica |
en |
dc.identifier.doi |
10.4064/sm174-3-2 |
en |
dc.identifier.isi |
ISI:000240691200002 |
en |
dc.identifier.volume |
174 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
233 |
en |
dc.identifier.epage |
253 |
en |