dc.contributor.author |
Shouchuan, HU |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:24:52Z |
|
dc.date.available |
2014-03-01T01:24:52Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1385-1292 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17477 |
|
dc.subject |
Homoclinics |
en |
dc.subject |
Mountain Pass lemma |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
Ordinary p-Laplacian |
en |
dc.subject |
Subdifferentials |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
CRITICAL-POINT THEORY |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
HAMILTONIAN-SYSTEMS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
MULTIPLICITY |
en |
dc.subject.other |
ORBITS |
en |
dc.title |
Positive periodic and homoclinic solutions for nonlinear differential equations with nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11117-005-0028-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11117-005-0028-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We study the existence of positive solutions and of positive homoclinic (to zero) solutions for a class of periodic problems driven by the scalar ordinary p-Laplacian and having a nonsmooth potential. Our approach is variational based on the nonsmooth critical point theory and our results extend the recent works of Korman-Lazer (Electronic JDE (1994)) and of Grossinho-Minhos-Tersian (J. Math. Anal. Appl. 240 (1999)). |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Positivity |
en |
dc.identifier.doi |
10.1007/s11117-005-0028-8 |
en |
dc.identifier.isi |
ISI:000237563100009 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
343 |
en |
dc.identifier.epage |
363 |
en |