dc.contributor.author |
Melagraki, G |
en |
dc.contributor.author |
Afantitis, A |
en |
dc.contributor.author |
Makridima, K |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Igglessi-Markopoulou, O |
en |
dc.date.accessioned |
2014-03-01T01:24:52Z |
|
dc.date.available |
2014-03-01T01:24:52Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1610-2940 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17485 |
|
dc.subject |
Neural network |
en |
dc.subject |
QSTR |
en |
dc.subject |
RBF architecture |
en |
dc.subject |
Tetrahymena pyriformis |
en |
dc.subject |
Toxicity |
en |
dc.subject.classification |
Biochemistry & Molecular Biology |
en |
dc.subject.classification |
Biophysics |
en |
dc.subject.classification |
Chemistry, Multidisciplinary |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.other |
2,3 dichlorophenol |
en |
dc.subject.other |
2,4,6 trichlorophenol |
en |
dc.subject.other |
guaiacol |
en |
dc.subject.other |
pentachlorophenol |
en |
dc.subject.other |
phenol derivative |
en |
dc.subject.other |
phloroglucinol |
en |
dc.subject.other |
accuracy |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
chemical structure |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
multiple linear regression analysis |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
physical chemistry |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
quantitative analysis |
en |
dc.subject.other |
statistical significance |
en |
dc.subject.other |
structure analysis |
en |
dc.subject.other |
Tetrahymena pyriformis |
en |
dc.subject.other |
toxicity testing |
en |
dc.subject.other |
validation process |
en |
dc.subject.other |
Animals |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Phenols |
en |
dc.subject.other |
Tetrahymena pyriformis |
en |
dc.subject.other |
Tetrahymena pyriformis |
en |
dc.title |
Prediction of toxicity using a novel RBF neural network training methodology |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00894-005-0032-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00894-005-0032-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A neural network methodology based on the radial basis function (RBF) architecture is introduced in order to establish quantitative structure-toxicity relationship models for the prediction of toxicity. The dataset used consists of 221 phenols and their corresponding toxicity values to Tetrahymena pyriformis. Physicochemical parameters and molecular descriptors are used to provide input information to the models. The performance and predictive abilities of the RBF models are compared to standard multiple linear regression (MLR) models. The leave-one-out cross validation procedure and validation through an external test set produce statistically significant R2 and RMS values for the RBF models, which prove considerably more accurate than the MLR models. © Springer-Verlag 2005. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Molecular Modeling |
en |
dc.identifier.doi |
10.1007/s00894-005-0032-8 |
en |
dc.identifier.isi |
ISI:000235756300006 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
297 |
en |
dc.identifier.epage |
305 |
en |