HEAL DSpace

Prediction of toxicity using a novel RBF neural network training methodology

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Melagraki, G en
dc.contributor.author Afantitis, A en
dc.contributor.author Makridima, K en
dc.contributor.author Sarimveis, H en
dc.contributor.author Igglessi-Markopoulou, O en
dc.date.accessioned 2014-03-01T01:24:52Z
dc.date.available 2014-03-01T01:24:52Z
dc.date.issued 2006 en
dc.identifier.issn 1610-2940 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17485
dc.subject Neural network en
dc.subject QSTR en
dc.subject RBF architecture en
dc.subject Tetrahymena pyriformis en
dc.subject Toxicity en
dc.subject.classification Biochemistry & Molecular Biology en
dc.subject.classification Biophysics en
dc.subject.classification Chemistry, Multidisciplinary en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.other 2,3 dichlorophenol en
dc.subject.other 2,4,6 trichlorophenol en
dc.subject.other guaiacol en
dc.subject.other pentachlorophenol en
dc.subject.other phenol derivative en
dc.subject.other phloroglucinol en
dc.subject.other accuracy en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other chemical structure en
dc.subject.other controlled study en
dc.subject.other methodology en
dc.subject.other multiple linear regression analysis en
dc.subject.other nonhuman en
dc.subject.other physical chemistry en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other quantitative analysis en
dc.subject.other statistical significance en
dc.subject.other structure analysis en
dc.subject.other Tetrahymena pyriformis en
dc.subject.other toxicity testing en
dc.subject.other validation process en
dc.subject.other Animals en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Phenols en
dc.subject.other Tetrahymena pyriformis en
dc.subject.other Tetrahymena pyriformis en
dc.title Prediction of toxicity using a novel RBF neural network training methodology en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00894-005-0032-8 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00894-005-0032-8 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A neural network methodology based on the radial basis function (RBF) architecture is introduced in order to establish quantitative structure-toxicity relationship models for the prediction of toxicity. The dataset used consists of 221 phenols and their corresponding toxicity values to Tetrahymena pyriformis. Physicochemical parameters and molecular descriptors are used to provide input information to the models. The performance and predictive abilities of the RBF models are compared to standard multiple linear regression (MLR) models. The leave-one-out cross validation procedure and validation through an external test set produce statistically significant R2 and RMS values for the RBF models, which prove considerably more accurate than the MLR models. © Springer-Verlag 2005. en
heal.publisher SPRINGER en
heal.journalName Journal of Molecular Modeling en
dc.identifier.doi 10.1007/s00894-005-0032-8 en
dc.identifier.isi ISI:000235756300006 en
dc.identifier.volume 12 en
dc.identifier.issue 3 en
dc.identifier.spage 297 en
dc.identifier.epage 305 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής