dc.contributor.author |
Rigatos, GG |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T01:24:57Z |
|
dc.date.available |
2014-03-01T01:24:57Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0165-0114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17510 |
|
dc.subject |
Associative memories |
en |
dc.subject |
Eigenstructure analysis |
en |
dc.subject |
Hebbian learning |
en |
dc.subject |
Quantum learning |
en |
dc.subject |
Strong fuzzy partition |
en |
dc.subject |
Unitary rotations |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Fuzzy control |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Quantum theory |
en |
dc.subject.other |
Vector quantization |
en |
dc.subject.other |
Associative memories |
en |
dc.subject.other |
Eigenstructure analysis |
en |
dc.subject.other |
Hebbian learning |
en |
dc.subject.other |
Quantum learning |
en |
dc.subject.other |
Strong fuzzy partition |
en |
dc.subject.other |
Unitary rotations |
en |
dc.subject.other |
Data processing |
en |
dc.title |
Quantum learning for neural associative memories |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.fss.2006.02.012 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.fss.2006.02.012 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Quantum information processing in neural structures results in an exponential increase of patterns storage capacity and can explain the extensive memorization and inferencing capabilities of humans. An example can be found in neural associative memories if the synaptic weights are taken to be fuzzy variables. In that case, the weights' update is carried out with the use of a fuzzy learning algorithm which satisfies basic postulates of quantum mechanics. The resulting weight matrix can be decomposed into a superposition of associative memories. Thus, the fundamental memory patterns (attractors) can be mapped into different vector spaces which are related to each other via unitary rotations. Quantum learning increases the storage capacity of associative memories by a factor of 2(N), where N is the number of neurons. (C) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Fuzzy Sets and Systems |
en |
dc.identifier.doi |
10.1016/j.fss.2006.02.012 |
en |
dc.identifier.isi |
ISI:000238402100005 |
en |
dc.identifier.volume |
157 |
en |
dc.identifier.issue |
13 |
en |
dc.identifier.spage |
1797 |
en |
dc.identifier.epage |
1813 |
en |