HEAL DSpace

Quantum learning for neural associative memories

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rigatos, GG en
dc.contributor.author Tzafestas, SG en
dc.date.accessioned 2014-03-01T01:24:57Z
dc.date.available 2014-03-01T01:24:57Z
dc.date.issued 2006 en
dc.identifier.issn 0165-0114 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17510
dc.subject Associative memories en
dc.subject Eigenstructure analysis en
dc.subject Hebbian learning en
dc.subject Quantum learning en
dc.subject Strong fuzzy partition en
dc.subject Unitary rotations en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Statistics & Probability en
dc.subject.other Fuzzy control en
dc.subject.other Learning algorithms en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Pattern recognition en
dc.subject.other Quantum theory en
dc.subject.other Vector quantization en
dc.subject.other Associative memories en
dc.subject.other Eigenstructure analysis en
dc.subject.other Hebbian learning en
dc.subject.other Quantum learning en
dc.subject.other Strong fuzzy partition en
dc.subject.other Unitary rotations en
dc.subject.other Data processing en
dc.title Quantum learning for neural associative memories en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.fss.2006.02.012 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.fss.2006.02.012 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Quantum information processing in neural structures results in an exponential increase of patterns storage capacity and can explain the extensive memorization and inferencing capabilities of humans. An example can be found in neural associative memories if the synaptic weights are taken to be fuzzy variables. In that case, the weights' update is carried out with the use of a fuzzy learning algorithm which satisfies basic postulates of quantum mechanics. The resulting weight matrix can be decomposed into a superposition of associative memories. Thus, the fundamental memory patterns (attractors) can be mapped into different vector spaces which are related to each other via unitary rotations. Quantum learning increases the storage capacity of associative memories by a factor of 2(N), where N is the number of neurons. (C) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Fuzzy Sets and Systems en
dc.identifier.doi 10.1016/j.fss.2006.02.012 en
dc.identifier.isi ISI:000238402100005 en
dc.identifier.volume 157 en
dc.identifier.issue 13 en
dc.identifier.spage 1797 en
dc.identifier.epage 1813 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής