HEAL DSpace

Regulating the vibratory motion of beams using shape optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Tsiatas, GC en
dc.date.accessioned 2014-03-01T01:25:04Z
dc.date.available 2014-03-01T01:25:04Z
dc.date.issued 2006 en
dc.identifier.issn 0022-460X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17524
dc.subject Cross Section en
dc.subject Differential Equation en
dc.subject Free Vibration en
dc.subject Inequality Constraint en
dc.subject Lower and Upper Bound en
dc.subject Nonlinear Optimization en
dc.subject Objective Function en
dc.subject Shape Optimization en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Beams and girders en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Frequencies en
dc.subject.other Motion control en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Analog equation method (AEM) en
dc.subject.other Mass properties en
dc.subject.other Material volume en
dc.subject.other Optimization process en
dc.subject.other Vibrations (mechanical) en
dc.title Regulating the vibratory motion of beams using shape optimization en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jsv.2005.08.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jsv.2005.08.002 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, shape optimization is used to regulate the vibrations of an Euler-Bernoulli beam having constant material volume. This is achieved by varying appropriately the beam cross-section and thus its stiffness and mass properties along its length, so that the beam vibrates with its minimum, maximum or a prescribed eigenfrequency as well as with the minimum or maximum difference between two successive eigenfrequencies. The problem is reduced to a nonlinear optimization problem under equality and inequality constraints as well as specified lower and upper bounds. The evaluation of the objective function requires the solution of the free vibration problem of a beam with variable mass and stiffness properties. This problem is solved using the analog equation method (AEM) for hyperbolic differential equations with variable coefficients. Besides its accuracy, this method overcomes the shortcoming of a FEM solution, which would require resizing of the elements and re-computation of their stiffness and mass properties during the optimization process. Certain example problems are presented, which illustrate the method and demonstrate its efficiency. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD en
heal.journalName Journal of Sound and Vibration en
dc.identifier.doi 10.1016/j.jsv.2005.08.002 en
dc.identifier.isi ISI:000235888900017 en
dc.identifier.volume 292 en
dc.identifier.issue 1-2 en
dc.identifier.spage 390 en
dc.identifier.epage 401 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής