HEAL DSpace

Response variability of stochastic frame structures using evolutionary field theory

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, V en
dc.contributor.author Deodatis, G en
dc.date.accessioned 2014-03-01T01:25:05Z
dc.date.available 2014-03-01T01:25:05Z
dc.date.issued 2006 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17533
dc.subject Monte Carlo simulation en
dc.subject Non-homogeneous stochastic fields en
dc.subject Stochastic finite element analysis en
dc.subject Upper bounds en
dc.subject Variability response function en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Computer simulation en
dc.subject.other Elastic moduli en
dc.subject.other Evolutionary algorithms en
dc.subject.other Finite element method en
dc.subject.other Integral equations en
dc.subject.other Mathematical models en
dc.subject.other Monte Carlo methods en
dc.subject.other Probability distributions en
dc.subject.other Random processes en
dc.subject.other Non-homogeneous stochastic fields en
dc.subject.other Spectral density function en
dc.subject.other Stochastic finite element analysis en
dc.subject.other Upper bounds en
dc.subject.other Variability response function (VRF) en
dc.subject.other Structural frames en
dc.subject.other finite element method en
dc.subject.other stochastic method en
dc.title Response variability of stochastic frame structures using evolutionary field theory en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2005.04.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2005.04.003 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The integral form for the variance of the response of stochastic statically indeterminate structural systems involving the so-called variability response function (VRF) and the spectral density function of the stochastic field modelling the uncertain system properties is established for the first time in this paper using evolutionary spectra theory. The VRF is a function depending on deterministic parameters related to the geometry, boundary conditions, (mean) material properties and loading of the structural system. No approximations are involved in the derivation of the integral form. However, a conjecture has to be made that is validated using Monte Carlo simulations. The uncertain system property considered is the inverse of the elastic modulus (flexibility). Closed-form expressions can be derived in principle for the VRF of any statically determinate or indeterminate frame system using a flexibility-based formulation. Alternatively, a fast Monte Carlo simulation approach is provided to numerically evaluate the VRF. It is shown in closed-form and numerically that the VRF for statically indeterminate structures is a function of the standard deviation sigma(ff) of the stochastic field modeling the inverse of the elastic modulus. Although the VRF depends on sigma(ff), it appears to be independent of the functional form of the spectral density function of the stochastic field modeling the uncertain system properties. For statically determinate structures, the VRF is independent of sigma(ff). The integral form can be used to compute the variance of the system response as well as its upper bound with minimal computational effort. It also provides an excellent insight into the mechanisms controlling the response variability. The upper bounds for the response variance are spectral- and probability-distribution-free requiring knowledge of only the variance of the inverse of the elastic modulus. The proposed bounds are realizable in the sense that it is possible to determine the probabilistic characteristics of the stochastic field that produces them. Several numerical examples are provided demonstrating the capabilities of the methodology. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2005.04.003 en
dc.identifier.isi ISI:000234528400012 en
dc.identifier.volume 195 en
dc.identifier.issue 9-12 en
dc.identifier.spage 1050 en
dc.identifier.epage 1074 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής