dc.contributor.author |
Dafalias, YF |
en |
dc.contributor.author |
Manzari, MT |
en |
dc.contributor.author |
Papadimitriou, AG |
en |
dc.date.accessioned |
2014-03-01T01:25:06Z |
|
dc.date.available |
2014-03-01T01:25:06Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0363-9061 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17544 |
|
dc.subject |
Anisotropy |
en |
dc.subject |
Clays |
en |
dc.subject |
Constitutive relations |
en |
dc.subject |
Plasticity |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Clay |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Consolidation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Anisotropic plasticity clay model |
en |
dc.subject.other |
Constitutive relations |
en |
dc.subject.other |
Stress space |
en |
dc.subject.other |
Undrained compression |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Clay |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Consolidation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
anisotropy |
en |
dc.subject.other |
clay soil |
en |
dc.subject.other |
compression |
en |
dc.subject.other |
consolidation |
en |
dc.subject.other |
laboratory method |
en |
dc.subject.other |
numerical method |
en |
dc.subject.other |
plasticity |
en |
dc.subject.other |
simulation |
en |
dc.subject.other |
soil mechanics |
en |
dc.title |
SANICLAY: Simple anisotropic clay plasticity model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/nag.524 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/nag.524 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
SANICLAY is a new simple anisotropic clay plasticity model that builds on a modification of an earlier model with an associated flow rule, in order to include simulations of softening response under undrained compression following Ko consolidation. Non-associativity is introduced by adopting a yield surface different than the plastic potential surface. Besides, the isotropic hardening of the yield surface both surfaces evolve according to a combined distortional and rotational hardening rule, simulating the evolving anisotropy. Although built on the general premises of critical state soil mechanics, the model induces a critical state line in the void ratio-mean effective stress space, which is a function of anisotropy. To ease interpretation, the model formulation is presented firstly in the triaxial stress space and subsequently, its multiaxial generalization is developed systematically, in a form appropriate for implementation in numerical codes. The SANICLAY is shown to provide successful simulation of both undrained and drained rate-independent behaviour of normally consolidated sensitive clays, and to a satisfactory degree of accuracy of overconsolidated clays. The new model requires merely three constants more than those of the modified Cam clay model, all of which are easily calibrated from well-established laboratory tests following a meticulously presented procedure. Copyright © 2006 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical and Analytical Methods in Geomechanics |
en |
dc.identifier.doi |
10.1002/nag.524 |
en |
dc.identifier.isi |
ISI:000241051400004 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
1231 |
en |
dc.identifier.epage |
1257 |
en |