HEAL DSpace

Second-order diffraction by a bottom-seated compound cylinder

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mavrakos, SA en
dc.contributor.author Chatjigeorgiou, IK en
dc.date.accessioned 2014-03-01T01:25:08Z
dc.date.available 2014-03-01T01:25:08Z
dc.date.issued 2006 en
dc.identifier.issn 0889-9746 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17551
dc.subject Boundary Condition en
dc.subject Free Surface en
dc.subject Nonlinear Waves en
dc.subject Numerical Technique en
dc.subject Pressure Distribution en
dc.subject Rational Number en
dc.subject Satisfiability en
dc.subject sturm-liouville problem en
dc.subject Potential Difference en
dc.subject Second Order en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Computational geometry en
dc.subject.other Green's function en
dc.subject.other Integral equations en
dc.subject.other Pressure distribution en
dc.subject.other Bottom-seated compound cylinder en
dc.subject.other Gauss-Legendre numerical technique en
dc.subject.other Second-order diffraction en
dc.subject.other Sturm-Liouville problems en
dc.subject.other Fluid structure interaction en
dc.subject.other Boundary conditions en
dc.subject.other Computational geometry en
dc.subject.other Fluid structure interaction en
dc.subject.other Green's function en
dc.subject.other Integral equations en
dc.subject.other Pressure distribution en
dc.title Second-order diffraction by a bottom-seated compound cylinder en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jfluidstructs.2005.12.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jfluidstructs.2005.12.001 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The second-order diffraction potential around a bottom-seated compound cylinder is considered. The solution method is based on a semi-analytical formulation for the double-frequency diffraction potentials, which are properly decomposed into a rational number of components in order to satisfy all boundary conditions involved in the problem. The solution process results in two different Sturm-Liouville problems which are treated separately in the ring-shaped fluid regions defined by the geometry of the structure. The matching of the potentials on the boundaries of adjacent fluid regions is established using the 'free' wave components of the potentials. Different Green's functions are constructed for each of the fluid regions surrounding the body. The calculation of integrals of the pressure distribution on the free surface is carried out using an appropriate Gauss-Legendre numerical technique. The efficiency of the method described in the present work is validated through comparative calculations. Finally, extensive numerical predictions are presented concerning the complete second-order excitation and the nonlinear wave elevation for various configurations of vertical axisymmetric bodies. (c) 2006 Elsevier Ltd. All rights reserved. en
heal.publisher ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD en
heal.journalName Journal of Fluids and Structures en
dc.identifier.doi 10.1016/j.jfluidstructs.2005.12.001 en
dc.identifier.isi ISI:000237788000002 en
dc.identifier.volume 22 en
dc.identifier.issue 4 en
dc.identifier.spage 463 en
dc.identifier.epage 492 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής