HEAL DSpace

Shear deformation effect in second-order analysis of composite frames subjected in variable axial loading by BEM

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Mokos, VG en
dc.date.accessioned 2014-03-01T01:25:09Z
dc.date.available 2014-03-01T01:25:09Z
dc.date.issued 2006 en
dc.identifier.issn 19302983 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17558
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33846866977&partnerID=40&md5=2c9c7d8336c9f1787097145d72132ddf en
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-77951853025&partnerID=40&md5=c87fdce6908c14b66732fdc308a5f28c en
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Second order analysis en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Transverse shear stresses en
dc.subject.other Boundary element method en
dc.subject.other Boundary value problems en
dc.subject.other Composite beams and girders en
dc.subject.other Composite structures en
dc.subject.other Deflection (structures) en
dc.subject.other Poisson ratio en
dc.subject.other Shear deformation en
dc.subject.other Shear stress en
dc.subject.other Stress concentration en
dc.subject.other Structural loads en
dc.subject.other Axial displacement en
dc.subject.other Axial loading en
dc.subject.other Second order analysis en
dc.subject.other Stress function en
dc.subject.other Structural frames en
dc.title Shear deformation effect in second-order analysis of composite frames subjected in variable axial loading by BEM en
heal.type journalArticle en
heal.publicationDate 2006 en
heal.abstract In this paper a boundary element method is developed for the second-order analysis of frames consisting of composite beams of arbitrary constant cross section, taking into account shear deformation effect. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. Each beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the beam deflection, the axial displacement and to a stress function and solved employing a pure BEM approach, that is only boundary discretization is used. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress function using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of both the shear deformation effect and the variableness of the axial loading are remarkable. Copyright © 2006 Tech Science Press. en
heal.journalName SDHM Structural Durability and Health Monitoring en
dc.identifier.volume 2 en
dc.identifier.issue 4 en
dc.identifier.spage 207 en
dc.identifier.epage 223 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής