dc.contributor.author |
Tsenoglou, CJ |
en |
dc.contributor.author |
Voyiatzis, E |
en |
dc.contributor.author |
Gotsis, AD |
en |
dc.date.accessioned |
2014-03-01T01:25:09Z |
|
dc.date.available |
2014-03-01T01:25:09Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0377-0257 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17561 |
|
dc.subject |
Alignment strength |
en |
dc.subject |
Biaxial |
en |
dc.subject |
Branching |
en |
dc.subject |
Constitutive relation |
en |
dc.subject |
Elongation |
en |
dc.subject |
Extension |
en |
dc.subject |
Eyring plasticity |
en |
dc.subject |
Melt strength |
en |
dc.subject |
Nonlinear |
en |
dc.subject |
Planar |
en |
dc.subject |
Polymer |
en |
dc.subject |
Strain damping function |
en |
dc.subject |
Uniaxial |
en |
dc.subject |
Viscoelasticity |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Incompressible flow |
en |
dc.subject.other |
Macromolecules |
en |
dc.subject.other |
Strain hardening |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Alignment strength |
en |
dc.subject.other |
Constitutive relation |
en |
dc.subject.other |
Eyring plasticity |
en |
dc.subject.other |
Melt strength |
en |
dc.subject.other |
Strain damping function |
en |
dc.subject.other |
Viscoelasticity |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Incompressible flow |
en |
dc.subject.other |
Macromolecules |
en |
dc.subject.other |
Strain hardening |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Viscoelasticity |
en |
dc.title |
Simple constitutive modelling of nonlinear viscoelasticity under general extension |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jnnfm.2006.05.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jnnfm.2006.05.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We study the behaviour of a single integral constitutive equation, capable of providing analytic expressions for the viscoelastic stress in extensional flows of a variety of deformation histories and geometries, ranging from uniaxial to equibiaxial. It is based on the use of a stress damping function, with a power-law dependence on the elongation, lambda: h(lambda) = 1/lambda(n). The parameter n (0 <= n <= 2) signifies the nonlinear viscoelastic character of the material and, therefore, is an inverse measure of network connectivity strength of the underlying microstructure. This renders the constitutive approach applicable to incompressible polymers of a variable degree of branching, strain hardening and stress thinning behavior. Methods of connecting n with the macromolecular architecture and the alignment strength of the flow are also explored. (c) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Non-Newtonian Fluid Mechanics |
en |
dc.identifier.doi |
10.1016/j.jnnfm.2006.05.002 |
en |
dc.identifier.isi |
ISI:000240846200004 |
en |
dc.identifier.volume |
138 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
33 |
en |
dc.identifier.epage |
43 |
en |