dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Kolaiti, E |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:25:10Z |
|
dc.date.available |
2014-03-01T01:25:10Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0026-1335 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17578 |
|
dc.subject |
Circulant cores |
en |
dc.subject |
Distinct runs |
en |
dc.subject |
Generalized projectivity |
en |
dc.subject |
Generalized resolution |
en |
dc.subject |
Generalized wordlength pattern |
en |
dc.subject |
Hadamard matrices |
en |
dc.subject |
Orthogonal arrays |
en |
dc.subject |
Screening designs |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
FRACTIONAL FACTORIAL-DESIGNS |
en |
dc.subject.other |
MINIMUM ABERRATION CRITERIA |
en |
dc.subject.other |
PLACKETT-BURMAN |
en |
dc.title |
Some orthogonal arrays with 32 runs and their projection properties |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00184-005-0018-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00184-005-0018-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Screening designs are useful for situations where a large number of factors are examined but only a few, k, of them are expected to be important. Traditionally orthogonal arrays such as Hadamard matrices and Plackett Burman designs have been studied for this purpose. It is therefore of practical interest for a given k to know all the classes of inequivalent projections of the design into the k dimensions that have certain statistical properties. In this paper we present 15 inequivalent Hadamard matrices of order n = 32 constructed from circulant cores. We study their projection properties using several well-known statistical criteria and we provide minimum generalized aberration 2 level designs with 32 runs and up to seven factors that are embedded into these Hadamard matrices. A concept of generalized projectivity and design selection of such designs is also discussed. |
en |
heal.publisher |
PHYSICA-VERLAG GMBH & CO |
en |
heal.journalName |
Metrika |
en |
dc.identifier.doi |
10.1007/s00184-005-0018-7 |
en |
dc.identifier.isi |
ISI:000237190100002 |
en |
dc.identifier.volume |
63 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
271 |
en |
dc.identifier.epage |
281 |
en |