HEAL DSpace

The performance of pixel window algorithms in the classification of habitats using VHSR imagery

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Keramitsoglou, I en
dc.contributor.author Sarimveis, H en
dc.contributor.author Kiranoudis, CT en
dc.contributor.author Kontoes, C en
dc.contributor.author Sifakis, N en
dc.contributor.author Fitoka, E en
dc.date.accessioned 2014-03-01T01:25:16Z
dc.date.available 2014-03-01T01:25:16Z
dc.date.issued 2006 en
dc.identifier.issn 0924-2716 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17626
dc.subject EUNIS en
dc.subject habitat classification en
dc.subject kernel based re-classification en
dc.subject RBF neural networks en
dc.subject support vector machines en
dc.subject.classification Geography, Physical en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Ecosystems en
dc.subject.other Fuzzy sets en
dc.subject.other Image sensors en
dc.subject.other Neural networks en
dc.subject.other Vectors en
dc.subject.other EUNIS en
dc.subject.other Habitat classification en
dc.subject.other Kernel based re-classification en
dc.subject.other RBF neural networks en
dc.subject.other Support vector machines en
dc.subject.other Algorithms en
dc.subject.other algorithm en
dc.subject.other artificial neural network en
dc.subject.other classification en
dc.subject.other habitat structure en
dc.subject.other mapping en
dc.subject.other satellite imagery en
dc.subject.other spatial resolution en
dc.subject.other wetland en
dc.subject.other Central Macedonia en
dc.subject.other Eurasia en
dc.subject.other Europe en
dc.subject.other Greece en
dc.subject.other Kerkini Lake en
dc.subject.other Macedonia [Greece] en
dc.subject.other Serrai en
dc.subject.other Southern Europe en
dc.title The performance of pixel window algorithms in the classification of habitats using VHSR imagery en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.isprsjprs.2006.01.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.isprsjprs.2006.01.002 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This study investigates the potential of three advanced pixel window classification methods for habitat mapping, namely Kernel based spatial Re-Classification (KRC), Radial Basis Function (RBF) neural networks (NN) and Support Vector Machines (SVM). KRC classifier takes into account the spatial arrangement and frequency of spectral classes present within a predefined square kernel. On the other hand, RBF-NN and SVM classifiers use a set of spectral parameters (digital numbers of training pixels, mean values and standard deviations within a specified window kernel) as input information. The fuzzy means clustering algorithm is utilized for training the RBF networks. This method is based on a fuzzy partition of the input space and requires only a short amount of time to determine both the structure and the parameters of the RBF-NN classifier. The radial basis function is also adopted as the kernel function in the implementation of the SVM methodology. The test area of the present study is Lake Kerkini, a wetland ecosystem located in Macedonia (Northern Greece). The methods are applied to a very high spatial resolution multispectral satellite image acquired by IKONOS-2. The nomenclature used is EUNIS, a detailed hierarchical habitat classification scheme. Several classification experiments are carried out using the same training samples in order to study the behaviour of the three classifiers and perform meaningful comparisons. Overall, all three classifiers performed satisfactorily; however the SVM and RBF-NN classifiers consistently outperformed KRC, reaching overall accuracies of 72% and 69%, respectively. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName ISPRS Journal of Photogrammetry and Remote Sensing en
dc.identifier.doi 10.1016/j.isprsjprs.2006.01.002 en
dc.identifier.isi ISI:000238475900001 en
dc.identifier.volume 60 en
dc.identifier.issue 4 en
dc.identifier.spage 225 en
dc.identifier.epage 238 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής