dc.contributor.author |
Modis, K |
en |
dc.contributor.author |
Papaodysseus, K |
en |
dc.date.accessioned |
2014-03-01T01:25:18Z |
|
dc.date.available |
2014-03-01T01:25:18Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0882-8121 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17638 |
|
dc.subject |
Accuracy of estimation |
en |
dc.subject |
Geostatistics |
en |
dc.subject |
Sampling density |
en |
dc.subject |
Sampling theorem |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Ore deposit geology |
en |
dc.subject.other |
Sampling |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
estimation method |
en |
dc.subject.other |
geostatistics |
en |
dc.subject.other |
ore body |
en |
dc.subject.other |
theoretical study |
en |
dc.title |
Theoretical estimation of the critical sampling size for homogeneous ore bodies with small nugget effect |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11004-005-9020-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11004-005-9020-x |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The aim of this work is to investigate whether it is possible to determine a critical sampling grid density for a given ore body, above which further improvement in the accuracy of the estimated ore reserves would be small or negligible. The methodology employed is based on the theory of information. First, it is proven that the range of influence, when appears in the variogram function, is a measure of the maximum variability frequency observed in the ore body. Then, a simple application of the well-known sampling theorem shows that, under certain assumptions, it is possible to define a critical sampling density as mentioned before. An approximate rule of thumb can then be stated: That critical sampling grid size is half the range of influence observed in the variogram. © International Association for Mathematical Geology 2006. |
en |
heal.publisher |
SPRINGER/PLENUM PUBLISHERS |
en |
heal.journalName |
Mathematical Geology |
en |
dc.identifier.doi |
10.1007/s11004-005-9020-x |
en |
dc.identifier.isi |
ISI:000242830400006 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
489 |
en |
dc.identifier.epage |
501 |
en |