HEAL DSpace

Thermodynamic property calculations with the universal mixing rule for EoS/GE models: Results with the Peng-Robinson EoS and a UNIFAC model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voutsas, E en
dc.contributor.author Louli, V en
dc.contributor.author Boukouvalas, C en
dc.contributor.author Magoulas, K en
dc.contributor.author Tassios, D en
dc.date.accessioned 2014-03-01T01:25:23Z
dc.date.available 2014-03-01T01:25:23Z
dc.date.issued 2006 en
dc.identifier.issn 0378-3812 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17643
dc.subject Asymmetric system en
dc.subject Equation of state en
dc.subject Mixing rule en
dc.subject Peng-Robinson en
dc.subject Thermodynamic properties en
dc.subject UNIFAC en
dc.subject.classification Thermodynamics en
dc.subject.classification Chemistry, Physical en
dc.subject.classification Engineering, Chemical en
dc.subject.other Correlation methods en
dc.subject.other Mathematical models en
dc.subject.other Mixing en
dc.subject.other Polymers en
dc.subject.other Solvents en
dc.subject.other Thermal effects en
dc.subject.other Thermodynamic properties en
dc.subject.other Asymmetric system en
dc.subject.other Mixing rule en
dc.subject.other Peng-Robinson en
dc.subject.other UNIFAC en
dc.subject.other Equations of state en
dc.subject.other Correlation methods en
dc.subject.other Equations of state en
dc.subject.other Mathematical models en
dc.subject.other Mixing en
dc.subject.other Polymers en
dc.subject.other Solvents en
dc.subject.other Thermal effects en
dc.subject.other Thermodynamic properties en
dc.title Thermodynamic property calculations with the universal mixing rule for EoS/GE models: Results with the Peng-Robinson EoS and a UNIFAC model en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.fluid.2005.12.028 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.fluid.2005.12.028 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The universal mixing rule (UMR), which incorporates an activity coefficient model in a cubic equation of state (EoS), and is applicable to all type of system asymmetries up to solvent/polymer ones, has been recently developed in our laboratory [Voutsas et al., Ind. Eng. Chem. Res. 43 (2004) 62381. The original UNIFAC model with temperature-independent interaction parameters was used in the original publication, which leads, however, to unsatisfactory VLE predictions at high temperatures and poor heats of mixing predictions. In this study the UMR is applied by coupling the translated and modified Peng-Robinson (t-mPR) EoS with an original UNIFAC-type model that utilizes linearly temperature-dependent interaction parameters, eliminating, thus, the aforementioned weaknesses. The performance of the resulting EoS/G(E) model, referred to as UMR-PRU, utilizing the available UNIFAC interaction parameters, as well as some parameters developed here for gas involving pairs, is evaluated in the prediction and, when necessary, correlation/prediction, of various thermodynamic properties, i.e. VLE, LLE, VLLE, SGE and heats of mixing. The results indicate that the new model represents a unique, simple and reliable tool for thermodynamic property calculations for systems of various degrees of non-ideality and asymmetry, including polymer solutions. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Fluid Phase Equilibria en
dc.identifier.doi 10.1016/j.fluid.2005.12.028 en
dc.identifier.isi ISI:000236637200023 en
dc.identifier.volume 241 en
dc.identifier.issue 1-2 en
dc.identifier.spage 216 en
dc.identifier.epage 228 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής