dc.contributor.author |
Papaefthimiou, VD |
en |
dc.contributor.author |
Zannis, TC |
en |
dc.contributor.author |
Rogdakis, ED |
en |
dc.date.accessioned |
2014-03-01T01:25:23Z |
|
dc.date.available |
2014-03-01T01:25:23Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0363-907X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17644 |
|
dc.subject |
Cooling tower |
en |
dc.subject |
Effectiveness |
en |
dc.subject |
Fill packing |
en |
dc.subject |
Thermal efficiency |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Nuclear Science & Technology |
en |
dc.subject.other |
Atmospheric humidity |
en |
dc.subject.other |
Atmospheric temperature |
en |
dc.subject.other |
Evaporation |
en |
dc.subject.other |
Flow of fluids |
en |
dc.subject.other |
Saturation (materials composition) |
en |
dc.subject.other |
Thermodynamic properties |
en |
dc.subject.other |
Thermodynamic stability |
en |
dc.subject.other |
Fill packing |
en |
dc.subject.other |
Thermal efficiency |
en |
dc.subject.other |
Water inlet temperature |
en |
dc.subject.other |
Water mass flow rate |
en |
dc.subject.other |
Water cooling towers |
en |
dc.subject.other |
Atmospheric humidity |
en |
dc.subject.other |
Atmospheric temperature |
en |
dc.subject.other |
Evaporation |
en |
dc.subject.other |
Flow of fluids |
en |
dc.subject.other |
Saturation (materials composition) |
en |
dc.subject.other |
Thermodynamic properties |
en |
dc.subject.other |
Thermodynamic stability |
en |
dc.subject.other |
Water cooling towers |
en |
dc.title |
Thermodynamic study of wet cooling tower performance |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/er.1158 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/er.1158 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
An analytical model was developed to describe thermodynamically the water evaporation process inside a counter-flow wet cooling tower, where the air stream is in direct contact with the failing water, based on the implementation of the energy and mass balance between air and water stream describing thus, the rate of change of air temperature, humidity ratio, water temperature and evaporated water mass along tower height. The reliability of model predictions was ensured by comparisons made with pertinent experimental data, which were obtained from the literature. The paper elaborated the effect of atmospheric conditions, water mass flow rate and water inlet temperature on the variation of the thermodynamic properties of moist air inside the cooling tower and on its thermal performance characteristics. The analysis of the theoretical results revealed that the thermal performance of the cooling tower is sensitive to the degree of saturation of inlet air. Hence, the cooling capacity of the cooling tower increases with decreasing inlet air wet bulb temperature whereas the overall water temperature fall is curtailed with increasing water to air mass ratio. The change of inlet water temperature does not affect seriously the thermal behaviour of the cooling tower. Copyright (c) 2005 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal of Energy Research |
en |
dc.identifier.doi |
10.1002/er.1158 |
en |
dc.identifier.isi |
ISI:000237520600004 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
411 |
en |
dc.identifier.epage |
426 |
en |